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1. This questions comprises two independent parts.

(i) Let g : R → R be continuous and such that g(0) = 0 and g(x)g(−x) > 0 for any
x > 0. Find all solutions f : R→ R to the functional equation

g(f(x+ y)) = g(f(x)) + g(f(y)), x, y ∈ R.

(ii) Find all continuously differentiable functions ϕ : [a,∞) → R, where a > 0, that
satisfies the equation

(ϕ(x))2 =

∫ x

a

(|ϕ(y)|2 + |ϕ′(y)|2) dy − (x− a)3, ∀x > a.

2. This question, again, comprises two independent parts.

(i) Show that if (k+ 1) integers are chosen from {1, 2, 3, . . . , 2k+ 1}, then among the
chosen integers there are always two that are coprime.

(ii) Let A = {1, 2, . . . , n}. Prove that if n > 11 then there is a bijective map f : A→ A
with the property that, for every a ∈ A, exactly one of f(f(f(f(a)))) = a and
f(f(f(f(f(a))))) = a holds.

3. A ‘magic square’ of size n is an n×n array of real numbers such that all the rows, all the
columns and the two main diagonals have the same sum. Determine the dimension,
over R, of the vector space of n× n magic squares.

4. For u, v ∈ R4, let 〈u, v〉 denote the usual dot product. Define a vector field to be a
map ω : R4 → R4 such that 〈ω(z), z〉 = 0 ∀z ∈ R4.

Find a maximal collection of vector fields {ω1, . . . , ωk} such that the map Ω sending
z to λ1ω1(z) + · · ·+ λkωk(z), with λ1, . . . , λk ∈ R, is nonzero on R4\{0} unless
λ1 = · · · = λk = 0.

5. For continuously differentiable function f : [0, 1]→ R with f(1/2) = 0, show that(∫ 1

0

f(x) dx

)2

6
1

4

∫ 1

0

(f ′(x))2 dx
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6. A country has four political parties - the Blue Party, the Red Party, the Yellow Party
and the Orange Party - and a parliament of 650 seats.

(a) How many ways are there to divide the seats among the four parties so that none
of the parties have a majority? (To have a majority that party must hold more
than half of the seats.)

The parliament is particularly worried about cyber security. They have decided that
all login passwords must be of length exactly 6 and be a combination of a legal set of
elements made up of the digits 0-9, the 52 upper and lower case letters (a-z and A-Z),
and five special characters: $, £, *, &, %. For the password to be allowed, it must
contain at least one letter or special character and any letter or special character in
the password must be followed by a digit (so it must end in a digit).

(b) The Blue members of parliament have decided to choose their password by selecting
6 elements from the legal set without replacement. What is the probability it is
allowed?

Note: you may leave your answers as combinatorial or factorial terms.

THE END


