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1. Observe that, in the usual chessboard colouring of the two-dimensional grid, each
square has 4 of its 8 neighbours black and 4 white. Does there exist a way to colour
the three-dimensional grid such that each cube has half of its 26 neighbours black and
half white? Is this possible in four dimensions?

2. In the symmetric group Sn (n ≥ 3), let Ga,b be the subgroup generated by the 2-cycle
(a b) and the n-cycle (1 2 · · · n). Find the index |Sn : Ga,b|.

3. Show that if the faces of a tetrahedron have the same area, then they are congruent.

4. Let f : {0, 1}n → {0, 1} ⊆ R be a function. Call such a function a Boolean function.
Let ∧ denote the component-wise multiplication in {0, 1}n. For example, for n =
4, (0, 0, 1, 1) ∧ (0, 1, 0, 1) = (0, 0, 0, 1).

Let S = {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n}. f is called the oligarchy function over S if

f(x) = xi1xi2 · · ·xik (with the usual multiplication),

where xi denotes the i-th component of x. By convention, f is called the oligarchy
function over ∅ if f is constantly 1.

(i) Suppose f is not constantly zero. Show that f is an oligarchy function
:
if
:::::
and

:::::
only

:
if f satisfies

f(x ∧ y) = f(x)f(y), ∀x, y ∈ {0, 1}n.

Let Y be a uniformly distributed random variable over {0, 1}n. Let T be an operator
that maps Boolean functions to functions {0, 1}n → R, such that

(Tf)(x) = EY (f(x ∧ Y )), ∀x ∈ {0, 1}n

where EY () denotes the expectation over Y . f is called an eigenfunction of T if
∃ λ ∈ R\{0} such that

(Tf)(x) = λf(x), ∀x ∈ {0, 1}n.

(ii) Prove that f is an eigenfunction of T
::
if

::::
and

:::::
only

::
if f is an oligarchy function.

END OF QUESTIONS
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