IMPERIAL COLLEGE
MATHEMATICS COMPETITION

ROUND TWO
 Sunday, 23 February 2020

Name: \qquad
Contestant Number: \qquad
University: \qquad

Instructions:

- Do not turn over until told to do so.
- You will have 3 hours to solve 4 problems, each of which carries 10 marks.
- Use a black or blue pen or a dark pencil. Calculators are prohibited. Rulers and compasses may be used but will not be required. Erasers are also permitted.
- Use separate answer sheets for each question. On each sheet, write down the question number, your initials and contestant number. Use both sides whenever possible.
- Problems are listed roughly in order of difficulty. Proofs are expected for all problems even if they only ask for an answer.
- One complete solution will be awarded more marks than several partial solutions.
- Do not take away the problems sheet or any rough work when leaving the venue.

Declaration:

I hereby declare that the work I am submitting is entirely my own, and that I will not discuss or disclose the contents of this paper until 23 February 2020, 13:00 GMT (24 February 2020, 00:00 AEDT).

Signature: \qquad

FOR MARKERS' USE ONLY					
Problem	1	2	3	4	Total
Score					

Problem 1. An automorphism of a group $(G, *)$ is a bijective function $f: G \rightarrow G$ satisfying $f(x * y)=f(x) * f(y)$ for all $x, y \in G$.

Find a group $(G, *)$ with fewer than $(201.6)^{2}=40642.56$ unique elements and exactly 2016^{2} unique automorphisms.

Problem 2. Let \mathbb{R}^{2} denote the set of points in the Euclidean plane. For points $A, P \in \mathbb{R}^{2}$ and a real number k, define the dilation of A about P by a factor of k as the point $P+k(A-P)$. Call a sequence of points $A_{0}, A_{1}, A_{2}, \ldots \in \mathbb{R}^{2}$ unbounded if the sequence of lengths $\left|A_{0}-A_{0}\right|,\left|A_{1}-A_{0}\right|,\left|A_{2}-A_{0}\right|, \ldots$ has no upper bound.

Now consider n distinct points $P_{0}, P_{1}, \ldots, P_{n-1} \in \mathbb{R}^{2}$, and fix a real number r. Given a starting point $A_{0} \in \mathbb{R}^{2}$, iteratively define A_{i+1} by dilating A_{i} about P_{j} by a factor of r, where j is the remainder of i when divided by n.

Prove that if $|r| \geq 1$, then for any starting point $A_{0} \in \mathbb{R}^{2}$, the sequence $A_{0}, A_{1}, A_{2}, \ldots$ is either periodic or unbounded.

Problem 3. Let \mathbb{R} denote the set of real numbers. A subset $S \subseteq \mathbb{R}$ is called dense if any non-empty open interval of \mathbb{R} contains at least one element in S. For a function $f: \mathbb{R} \rightarrow \mathbb{R}$, let $\mathcal{O}_{f}(x)$ denote the set $\{x, f(x), f(f(x)), \ldots\}$.
(a) Is there a function $g: \mathbb{R} \rightarrow \mathbb{R}$, continuous everywhere in \mathbb{R}, such that $\mathcal{O}_{g}(x)$ is dense for all $x \in \mathbb{R}$?
(b) Is there a function $h: \mathbb{R} \rightarrow \mathbb{R}$, continuous at all but a single $x_{0} \in \mathbb{R}$, such that $\mathcal{O}_{h}(x)$ is dense for all $x \in \mathbb{R}$?

Problem 4. Let $\mathcal{S}=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ be a set of $n \geq 2020$ distinct points on the Euclidean plane, no three of which are collinear. Andy the ant starts at some point $S_{i_{1}}$ in \mathcal{S} and wishes to visit a series of 2020 points $\left\{S_{i_{1}}, S_{i_{2}}, \ldots, S_{i_{2020}}\right\} \subseteq \mathcal{S}$ in order, such that $i_{j}>i_{k}$ whenever $j>k$. It is known that ants can only travel between two points in \mathcal{S} in straight lines, and that an ant's path can never self-intersect.

Find a positive integer n such that Andy can always fulfil his wish.
(Lower n will be awarded more marks. Bounds for this problem may be used as a tiebreaker, should the need to do so arise.)

