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Time allowed: 3 hours Each problem carries 10 marks

Problem 1. An automorphism of a group (G, ∗) is a bijective function f : G → G
satisfying f(x ∗ y) = f(x) ∗ f(y) for all x, y ∈ G.

Find a group (G, ∗) with fewer than (201.6)2 = 40642.56 unique elements and exactly
20162 unique automorphisms.

Problem 2. Let R2 denote the set of points in the Euclidean plane. For points A,P ∈ R2

and a real number k, define the dilation of A about P by a factor of k as the point
P + k(A − P ). Call a sequence of points A0, A1, A2, . . . ∈ R2 unbounded if the sequence
of lengths |A0 − A0|, |A1 − A0|, |A2 − A0|, . . . has no upper bound.

Now consider n distinct points P0, P1, . . . , Pn−1 ∈ R2, and fix a real number r. Given
a starting point A0 ∈ R2, iteratively define Ai+1 by dilating Ai about Pj by a factor of r,
where j is the remainder of i when divided by n.

Prove that if |r| ≥ 1, then for any starting point A0 ∈ R2, the sequence A0, A1, A2, . . .
is either periodic or unbounded.

Problem 3. Let R denote the set of real numbers. A subset S ⊆ R is called dense
if any non-empty open interval of R contains at least one element in S. For a function
f : R→ R, let Of (x) denote the set {x, f(x), f(f(x)), . . . }.

(a) Is there a function g : R→ R, continuous everywhere in R, such that Og(x) is dense
for all x ∈ R?

(b) Is there a function h : R → R, continuous at all but a single x0 ∈ R, such that
Oh(x) is dense for all x ∈ R?

Problem 4. Let S = {S1, S2, . . . , Sn} be a set of n ≥ 2020 distinct points on the
Euclidean plane, no three of which are collinear. Andy the ant starts at some point Si1

in S and wishes to visit a series of 2020 points {Si1 , Si2 , . . . , Si2020} ⊆ S in order, such
that ij > ik whenever j > k. It is known that ants can only travel between two points in
S in straight lines, and that an ant’s path can never self-intersect.

Find a positive integer n such that Andy can always fulfil his wish.

(Lower n will be awarded more marks. Bounds for this problem may be used as a tie-
breaker, should the need to do so arise.)


