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Problem 1. (proposed by Tony Wang)

A set of points in the plane is called sane if no three points are collinear and the angle between
any three distinct points is a rational number of degrees.

(a) Does there exist a countably infinite sane set P?

(b) Does there exist an uncountably infinite sane set Q?

Notes on Marking. Five marks were allocated to part (a), and four to part (b). The last
mark was given for stating the correct answer to both parts. A correct construction for part
(a) without a proof was awarded three marks. Some contestants proved the result only for an
arbitrarily large finite number of points – this was awarded one mark.

Solution 1. (solution by Tony Wang)

We prove that the answers to the two parts are yes and no, respectively.

(a) We use directed angles for convenience. Let Γ be a circle with center O. Let A be a
point on Γ. We define P to be the set of all points P on the unit circle where ]AOP is
rational. Note that P has a countably infinite number of points. We now show that for
any distinct B,C,D ∈ P, ]BCD is rational: Note that by elementary circle theorems,
]BCD = 1

2]BOD = 1
2(]BOA+ ]AOD), where the summands are rational, and hence

]BCD is rational, as desired.

(b) Suppose for the sake of contradiction that there exists an uncountably infinite sane set
Q. Fix two points P,Q ∈ Q. Then any other point R ∈ Q must lie on a line ` passing
through Q such that the angle formed between ` and PQ is rational. However, note that
there are only a countably infinite number of possible `, and hence by infinite pigeonhole
principle, one such line must contain a uncountably infinite number of points in Q, but
this contradicts the fact that no three points are collinear. Hence no such Q exists.

Solution 2. (solution by the ICMC Problem Committee)

For part (a) we use the same solution as above. For part (b):

(b) Suppose for the sake of contradiction that there exists an uncountably infinite sane set
Q. Fix two points P,R ∈ Q. Then any other point Q ∈ Q must satisfy the condition
that ∠PQR is rational. However, there are only a countably infinite number of different
possible angles for ∠PQR, and so by infinite pigeonhole principle, a particular rational
q must be the angle for an uncountably infinite number of such ∠PQR’s. The locus of
points defined by Q such that ∠PQR = q forms two incomplete circles. There must be
an uncountably infinite number of points on one of these circles.

Let the circle be Γ and its centre O. As there are an uncountbaly infinite number of points
in Γ ∩ Q, there must exist a point A ∈ Γ ∩ Q such that ∠POA is irrational. Hence by
the same argument used in part (a), we can show that ∠PQA must also be irrational, a
contradiction.



Problem 2. (proposed by Tony Wang)

Let A be a square matrix with entries in the field Z/pZ such that An − I is invertible for every
positive integer n. Prove that there exists a positive integer m such that Am = 0.

(A matrix having entries in the field Z/pZ means that two matrices are considered the same if
each pair of corresponding entries differ by a multiple of p.)

Notes on Marking. No marks were awarded for proving that A is not invertible or has deter-
minant 0. There was no penalty for stating the incorrect finite number of matrices. In solution
2, a common mistake was to assume that all eigenvalues of A were in Z/pZ. Not all matrices in
Z/pZ have eigenvalues in Z/pZ, and working over the algebraic closure was critical. As such,
there was 5 point penalty for neglecting to work in the algebraic closure. Many contestants
incorrectly assumed various cancellation laws. Note that in the context of the problem, a series
expansion of (I −An)−1 is not well-defined unless A is nilpotent.

Solution 1. (solution by Tony Wang)

Note that there are finitely many matrices under consideration. Let the number be k ∈ N. Then
by pigeonhole principle, two of the k + 1 matrices A,A2, A3, . . . , Ak+1 must be equal. Suppose
that they are Ar and As, where r > s. Then note that

Ar −As = 0 ⇐⇒ As(Ar−s − I) = 0

⇐⇒ As = 0,

since Ar−s − I is invertible.

Solution 2. (solution by Cristi Calin)

We shall prove the statement using eigenvalues and the Cayley-Hamilton theorem.
By the Cayley-Hamilton theorem, the characteristic polynomial cA of A satisfies cA(A) = 0.

Consider the eigenvalues of A over the algebraic closure of Z/pZ. The closure is countable, but
all elements have finite order. Suppose for the sake of contradiction that some eigenvalue λ is
not zero. Then there exists m ∈ N such that λm = 1. However this implies det(Am − I) = 0,
and Am − I is therefore not invertible, which is a contradiction.

Since all eigenvalues are 0, the characteristic polynomial must be cA = Xn. Thus, cA(A) =
An = 0, as required.



Problem 3. (proposed by Cristi Calin)

Let sn =

∫ 1

0
sinn(nx) dx.

(a) Prove that sn ≤
2

n
for all odd n.

(b) Find all the limit points of the sequence s1, s2, s3, . . . .

Notes on Marking. Four marks were awarded for solving part (a) completely. Another mark
was awarded for stating the correct answer for part (b). No marks were awarded for the sub-
stitution x 7→ x/n. A brief graphical explanation of the proof for part (b) as shown in Solution
1 was awarded few marks. Some unique bounding arguments were awarded full marks, as well
as a few solutions which used Wallis’ integrals or the dominated convergence theorem.

Solution 1. (solution by the ICMC Problem Selection Committee)

We proceed with each part as follows:

(a) By the substitution x 7→ x/n we may consider sn = 1
n

∫ n
0 sinn(x) dx. Note that because

sin(x) = − sin(x+ π), we have sinn(x) = − sinn(x + π) for odd n. Let k = n mod 2π.
By the parity of sinn(x), we know that

∫ 2π
0 sinn(x)dx = 0. Hence,

1

n

∫ n

0
sinn(x) dx =

1

n

∫ k

0
sinn(x) dx ≤ 1

n

∫ π

0
sinn(x) dx ≤ 1

n

∫ π

0
sin(x) dx =

2

n
,

as required.

(b) We shall prove that the only limit point is 0. We already know that sn → 0 for odd n,
so it suffices to prove that sn → 0 for even n. To do so, we will bound the function from
above using rectangles, i.e. we shall take an appropriate upper Darboux sum to bound∫ n
0 sinn(x) dx.

For a sufficiently small δ > 0, we define the partition

Pδ(n) =

{[
0,
π

2
− δ
)
,
[π

2
− δ, π

2
+ δ
)
,

[
π

2
+ δ,

3π

2
− δ
)
, . . . ,

[
Xπ

2
± δ, n

]}
.

For each interval in Pδ(n) containing some multiple of π/2, we bound sinn(x) by a rectangle
of height 1. Otherwise, we can bound the interval by sinn(x) by a rectangle of height
sinn(π/2− δ) = cosn(δ), where we note that cosn(δ)→ 0 as n→∞. We note that there
are less than n multiples of π/2 in the interval [0, n], so the sum of the areas of these
rectangles is at most 2nδ + n cosn(δ), and hence

sn ≤
1

n
(2nδ + n cosn(δ)) = 2δ + cosn(δ)→ 2δ, as n→∞.

Now suppose for the sake of contradiction that 2ε > 0 was a limit point of the sequence.
By selecting δ < ε, we show that the terms of sn are eventually inside the interval (0, 2ε),
a contradiction. Then the sequence is bounded in the interval [0, 1] but has no limit point
greater than 0, hence by Bolzano–Weierstrass theorem, the only limit point is 0.



Solution 2. (solution by Cristi Calin)

Let y = nx, so that dy = n · dx. The integral an can therefore be rewritten as

an =

∫ 1

0
sinn(nx) =

∫ n
0 sinn(y)dy

n
.

We know from Euler’s identity that sin(x) = eix−e−ix

2i , so sinn(y) = (eiy−e−iy)n

(2i)n . The numerator
can be rewritten using the Binomial formula as

n∑
k=0

(
n

k

)
(−1)n−keiky · e−i(n−k)y =

n∑
k=0

(
n

k

)
e(2k−n)iy · (−1)n−k.

Thus,

an =

∫ n
0

∑n
k=0

(
n
k

)
(−1)n−k · e(2k−n)iydy

(2i)n

=

∑n
k=0

∫ n
0

(
n
k

)
(−1)n−k · e(2k−n)iydy

(2i)n
.

We now look separately at the cases when n is odd and when n is even.

• Case 1: When n is odd, the numerator can be rewritten as
∑n

0

(
n
k

)
· (−1)n−k · e(2k−n)in−1

2k−n
as 2k − n 6= 0. We apply the triangle inequality to |an|, so that we get

|an| ≤
1

2n · n
·
n∑
k=0

(
n

k

)
·

∣∣∣∣∣e(2k−n)in − 1

2k − n

∣∣∣∣∣ ≤ 1

2n · n
·
n∑
k=0

(
n

k

)
· 2 =

2

n
→ 0.

• Case 2: When n is even, for k = n
2 , e(2k−n)iy = 1, and its integral from 0 to n is n. Thus,

the numerator of an is equal to

n∑
k=0
k 6=n/2

(
n

k

)
· (−1)n−k · e

(2k−n)in − 1

2k − n
+

(
n

n/2

)
· n.

When we divide and apply the triangle inequality again, it becomes a sum of 2 terms
which both tend towards 0, so an → 0. To see that the term

(
n
n/2

)
/2n → 0, it is easy to

prove by induction that it is smaller than 1√
n+1

, which solves the problem.



Problem 4. (proposed by Tony Wang)

Does there exist a set R of positive rational numbers such that every positive rational number
is the sum of the elements of a unique finite subset of R?

Notes on Marking. To clarify, the sums involved cannot contain repeated elements of R.
No marks were awarded for stating the correct answer, or for analysing the cardinality of sets.

Solution 1. (solution by Tony Wang)

We show that the answer is no, by assuming for the sake of contradiction that there does exist
such a set R.

The set must be non-empty. Since scaling all values in R has no effect on the sum of elements
of subsets, we may assume WLOG that 1 ∈ R. Now suppose for the sake of contradiction that
x, y ∈ R with x ∈ (y, 2y). Then note that x − y is the sum of a unique subset A ⊂ R, but
y /∈ A as y > x − y. Hence {x} and {y} ∪ A are two distinct sets whose elements sum to x,
a contradiction. Hence there cannot exist two elements of R which are a factor of less than 2
apart, a lemma we will use in the following paragraph.

Now suppose that r1, r2, r3, . . . are the elements of R in the interval (0, 1). By the lemma
above, there only exist a finite number of elements in any interval (a, b) for a > 0, and so
we may assume they are ordered r1 > r2 > r3 > · · · without loss of generality. Note that
1/2n ≥ rn, otherwise we contradict the lemma above. However, if for any m, rm = 1/2m− ε for
ε ∈ (0, 1/2m), then the number 1− ε/2 would become unattainable as a sum of the elements of
a finite subset of R, since

sup
A⊂R∩(0,1)

≤
∞∑
i=1

ri ≤
∞∑
i=1

1

2i
− ε = 1− ε.

Hence we must have rm = 1/2m for all m. But now 1/3 = 0.012 is not expressible as the finite
sum of powers of two, and hence as the finite sum of a subset of R, and so such a set R cannot
exist.

Solution 2. (solution by Harun Khan)

Similarly to the first solution, we show that the answer is no, by assuming for the sake of
contradiction that there does exist such a set R. Similarly, the set must be non-empty, so we
assume WLOG that 1 ∈ R and we prove that if y ∈ R, then (y, 2y) ∩R = ∅.

We will show that if y ∈ R, then 2y ∈ R. Assume for a contradiction that 2y /∈ R. Then
2y can be written as a sum of the elements of a finite subset of R, say A = {x1, x2, ..., xn}. If
y ∈ A, then A\{y} and {y} will be two finite subsets of R that sum to y, a contradiction. Hence
y /∈ A. Since 2y /∈ R, we must have that n ≥ 2, so there exists at least one element of A which
is strictly smaller than y. So assume for a contradiction that x1 < y. Then 2y − x1 =

∑n
k=2 xk

is one representation of 2y − x1. Since x1 < y, we have that y − x1 > 0, so suppose that B is a
subset of R that sums to y − x1. Then y /∈ B (as y − x1 < y), so B ∪ {y} and A\{x1} are two
representations of 2y − x1 (which are different since one contains y, while the other doesn’t).
This shows a contradiction, so 2y must be in R. A simple inductive argument shows that if
y ∈ R, then for any n ∈ Z≥1, 2ny ∈ R.



Now let c ∈ R such that c < 1. Then there exists n ∈ Z≥1 such that c ∈ [1/2n, 1/2n−1).
The above paragraph implies that 2nc ∈ R, but 2nc ∈ [1, 2), so by the first paragraph 2nc = 1.
Hence the only possible elements of R smaller than 1 are negative powers of 2. Similarly as
in the first solution, 1/3 is not expressible as a finite sum of powers of two, which shows a
contradiction, so no such set R can exist.



Problem 5. (proposed by Harun Khan)

Find all composite positive integers m such that, whenever the product of two positive integers
a and b is m, their sum is a power of 2.

Notes on Marking. No marks were awarded for stating the correct answer, deriving that
m = 2k − 1 for some positive integer k, or proving that ab+ 1 ≥ a+ b. However, in some cases,
a mark was deducted for omitting the proof that ab + 1 ≥ a + b. Two marks were awarded
for proving that, apart from k = 4, k cannot be even (or composite), but in many cases there
were algebraic or bounding errors, and one mark was deducted. Some contestants working
through solution 4 incorrectly concluded that if 2k−1 ≡ 1 (mod p) and 2p−1 ≡ 1 (mod p), then
k − 1 | p− 1. As a counterexample, consider that 225 ≡ 1 (mod 31), but 25 - 30.

Solution 1. (solution by the ICMC Problem Selection Committee)

Let b ≥ a > 1 be positive integers and let ab+ 1 = 2n and a+ b = 2k. Since ab = 2n − 1 must
be odd, a and b must both be odd. Additionally, (ab+ 1)− (a+ b) = (a− 1)(b− 1) ≥ 0, so we
have 2n ≥ 2k, and hence

2k | 2n =⇒ a+ b | ab+ 1

=⇒ a+ b | ab+ 1− a(a+ b)

=⇒ 2k | (a+ 1)(a− 1).

Since a is odd, gcd(a + 1, a − 1) = 2, and so either 2k−1 | a + 1 or 2k−1 | a − 1. However,
2k−1 = a+b

2 ≥
a+a
2 > a − 1, so we must have 2k−1 = a + 1, or a = 2k−1 − 1. Since a + b = 2k,

we must also have b = 2k−1 + 1. In particular, note that a and b differ by two.
Finally, since ab = 4k−1 − 1 ≡ 0 (mod 3), we have m = 3× ab

3 . However, as ab
3 differs from

3 by 2, the only solution is m = 15 = 3× 5, which is easily confirmed.

Solution 2. (solution by Tony Wang)

Clearly, m = 2p−1 for some integer p. We can check that p = 1, 2, 3 don’t work, and that p = 4
does work. If p > 4 is not prime, then let p = qr where q ≥ r ≥ 2. Then q ≥ 3, and in base 2,

2p − 1 = 1111 · · · 1︸ ︷︷ ︸
p

2 = 00 · · · 01︸ ︷︷ ︸
r

00 · · · 01︸ ︷︷ ︸
r

· · · 00 · · · 01︸ ︷︷ ︸
r︸ ︷︷ ︸

q

2 × 111 · · · 1︸ ︷︷ ︸
r

2.

Then as q ≥ 3, adding up the factors yields a binary number with at least two 1’s, which cannot
be a power of 2. The only remaining cases are where p > 4 is prime.

Let q be a prime which divides 2p−1. Then 2p ≡ 1 (mod q), and by Fermat’s little theorem,
2q−1 ≡ 1 (mod q). Hence 2gcd(p,q−1) ≡ 1 (mod q), a contradiction unless p | q− 1 which implies
q = cp+ 1. As this is true for any prime factor q of 2p − 1, we can write

2p − 1 = (cp+ 1)(dp+ 1) = cdp2 + (c+ d)p+ 1, for positive integers c and d.

Writing 2k = (c+ d)p+ 2, we have 2k | 2p = cdp2 + (c+ d)p+ 2 =⇒ (c+ d)p+ 2 | cd.
Now note that if ν2(c + d) 6= 1, then k = ν2((c + d)p + 2) = 0 or 1, a contradiction, and

so ν2(c + d) = 1. If c and d are odd, then cd is odd, a contradiction. So, WLOG, to fulfil
ν2(c+d) = 1 we must have ν2(c) = 1 and ν2(d) = e > 1. Then 2k = (c+d)p+ 2 ≥ (2 + 2e)p+ 2,
and so k > e+1, but since 2k | cd, and we have ν2(cd) = e+1, we obtain our final contradiction.

Hence the only solution is m = 15.



Problem 6. (proposed by Tony Wang)

There are n+ 1 squares in a row, labelled from 0 to n. Tony starts with k stones on square 0.
On each move, he may choose a stone and advance the stone up to m squares where m is the
number of stones on the same square (including itself) or behind it.

Tony’s goal is to get all stones to square n. Show that Tony cannot achieve his goal in fewer
than n

1 + n
2 + · · ·+ n

k moves.

Notes on Marking. Many contestants attempted to use a greedy algorithm or induction.
In many cases these were awarded zero marks. Consider that when there are 7 squares and 3
stones, it is possible for Tony to achieve his goal in 13 moves, which provides a counterexample
to any proofs which allow the bound to be improved to

⌈
n
1

⌉
+
⌈
n
2

⌉
+ · · · +

⌈
n
k

⌉
moves. There

also exist counterexamples to many proofs which attempted to bound the number of jumps of
certain lengths.

Solution 1. (solution by Tony Wang)

For each move, the score of the move is calculated as follows: we shift the stone to the right
one square at a time. For each shift, the score of that shift by 1/i, where i is the number of
stones on the same square (including itself) or behind it. The score of the move is the sum of
the scores of the shifts of the move. We attribute the score of a shift as being given by the
square the stone started on at the beginning of the shift.

Note that the score of each move is at most 1: If we pick a stone to move, that can move
up to i squares, then the score of the first shift is 1/i. The score of each shift does not increase
thereafter, and so the sum of the scores of the shifts is at most 1.

Note that the total score of all moves will be n/1 + n/2 + · · · + n/k: For each of the first
n squares, all k stones must eventually pass it, so the sum of the scores given by each square
must be equal to 1/1 + 1/2 + · · ·+ 1/k. This is multiplied by the number of squares passed to
finish the proof.

Solution 2. (solution by Harun Khan)

After every move, we label every stone so that the ith stone from the left is labelled i. After
move m, suppose that the stone i is on square si for i ∈ {1, 2, . . . , k}. Let the score

Sm =
s1
1

+
s2
2

+ · · ·+ sk
k
.

We show that Sm+1 − Sm ≤ 1. Indeed, some stone r is moved d ≤ r squares in the (m+ 1)-th
move. If this stone hasn’t been relabelled, then clearly, Sm+1 − Sm ≤ 1 since it moves at most
r moves yet its weight remains 1/r. On the other hand, if stone r is re-labelled to r + l, then



as the stones were ordered:

Sm+1 − Sm =
ar + d

r + l
+
r+l−1∑
j=r

aj+1

j
−

r+l∑
j=r

aj
j

=
ar + d− ar+l

r + l
+
r+l−1∑
j=r

aj+1 − aj
j

<
ar + d− ar+l

r
+
r+l−1∑
j=r

aj+1 − aj
r

=
d

r
≤ 1.

Now note that S0 = 0 and Sz = n
1 + n

2 + · · ·+ n
k , where Tony takes z moves to achieve his goal.

As the score can increase by at most 1 on each move, he requires at least Sz moves.

Remark. One can use the rearrangement inequality instead to prove that our monovariant
increases by at most 1 after every move.

Solution 3. (solution by Tony Wang)

Construct a k × (n + 1) grid (matrix notation). Each column represents a square. In the cell
aij , write the number 1/i. At the start, each stone is on a cell ai0 (the stones fill up the leftmost
column). If we pick a stone on a square i and move it to the right j squares, this corresponds to
picking any stone on column i in the grid and shifting it to the right j cells, without changing
the row of the stone.

On any move, we ensure the following two conditions are satisfied:

• On each row there is exactly one stone.

• The stone on row i is further right or on the same column as the stone on row i− 1.

The first condition is trivially satisfied by the way we shift the stones in the grid. The second
condition is satisfied thus: The base case is trivial. On each move thereafter, we shift a chosen
stone in our grid to the right, one cell at a time, until the next shift would violate the condition.
At this point, there would be a stack of at least one stone directly underneath the stone we are
shifting on the grid. We switch to shifting the bottom-most stone of that stack instead. This
process repeats until the move is complete. We note that the final position on our grid (at the
end of the move) still corresponds to the position of the stones on the squares (at the end of
the move), even though our process of shifting the stones on our grid may be convoluted.

Because of the two conditions, we may say that on any move, the stone on row i can shift at
most i squares on our grid. In particular, if we start the move by shifting the stone on row i, the
total rightwards movement of all stones in our grid is at most i for that move, and furthermore,
no stones above row i will be shifted. The numbers written on these squares are all equal to
1/i or less, and so the total “score” for any move is at most 1. But note that the total score
increase after all moves have been played is n/1 + n/2 + · · ·+ n/k, and so that is the minimum
number of moves required.


