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Video Solutions

J Pi Maths, a YouTube channel run by a contestant this year, has made video solutions for all
the Round 1 and 2 problems this year. You can check them out here!
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https://www.youtube.com/playlist?list=PL-yrvlQ9Z8t-ANCee3u5NByRTAsuG2Zuy


Problem 1. (proposed by Tony Wang)

Let S be a set with 10 distinct elements. A set T of subsets of S (possibly containing the empty
set) is called union-closed if, for all A,B ∈ T , it is true that A∪B ∈ T . Show that the number
of union-closed sets T is less than 21023.

(A bound of 21023 will be awarded full marks, but lower bounds for this problem may be used
as a tie-breaker for the competition.)

Notes on Marking. The markers decided to condone a bound of exactly 21023.

The solutions presented here achieve the following bounds, respectively:

14256 ≈ 2974.7∑10
r=0

(
10
r

)
21015+r−2r ≈ 21019.4

21023 − 1 ≈ 21023

21023 − 21018 + 287 ≈ 21023

122128 ≈ 2887.1

Solution 5 is very similar to solution 1 except that it uses the base case {1, 2, 3} instead of {1, 2},
resulting in a larger computation but a lower bound.

Solution 1. (solution by contestants)

Let f(n) denote the number of union-closed sets T over a set Sn = {1, 2, . . . , n}. We bound
f(10) by showing that f(n) ≤ f(n− 1)2.

Let T be a union-closed set over Sn, for n ≥ 1. We partition T into A and B, where
A = {t ∈ T : n /∈ t}, and B = {t ∈ T : n ∈ t}. Then define B′ = {b\{n} : b ∈ B}. Note
that both A and B′ are union-closed sets over Sn−1, and furthermore, T uniquely partitions
into A and B′ by the above method. Since there are f(n − 1)2 choices of A and B′, we have
f(n) ≤ f(n− 1)2, as desired (we have an inequality here since not all T generated by arbitrary
A and B′ will be union-closed over Sn).

We now count that f(2) ≤ 14, since |P(P(S2))| = 16, but {{1}, {2}} and {∅, {1}, {2}} are
not union-closed. Hence f(10) ≤ f(2)2

8
= 14256 < 21023, since (14/16)256 < 1/2.

Solution 2. (solution by contestants)

Call a singleton a subset of S with exactly one element. Let T be a union-closed set with
exactly r singletons. If the singletons are {1}, {2}, . . . , {r}, then {r+ 1}, . . . , {10} /∈ T so 10− r
elements are not in T .

LetA = {1, 2, . . . , r}. On the other hand, we claim P(A)\{∅} ⊂ T . Indeed {1}, {2}, . . . , {r} ∈
T . Now suppose all k element subsets of A are in T . Then any k + 1-element subset of A can
be written as a union of a k-element subset and a 1-element subset, and so is an element of T .
Hence every element of P(A)\{φ} is an element of T . So the number of union-closed sets with
exactly r singletons is less than 22

10−(10−r+2r−1) since 10− r+2r−1 of 1024 choices are already
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determined. Hence the number of union-closed sets is at most
10∑
r=0

(
10

r

)
22

10−(10−r+2r−1) < 21014 + 24 · 21014 + 26 · 21013 + 27 · 21010 + 8(28 · 21003)

< 21020.

Solution 3. (solution by Tony Wang)

Let a generating set be a set G of subsets of S such that no element g ∈ G is the union of
two or more other elements in G. For each generating set G, it trivially generates a unique
union-closed set T , which is defined as the intersection of all union-closed sets which contain G
(or equivalently, the smallest union-closed set which contains G). We claim that each union-
closed set T also contains a unique generating set G: call an element t ∈ T reducible if it can be
expressed as the union of two or more other elements in T , and call it irreducible otherwise. On
one hand, if the generating set does not contain some irreducible element of T , then it cannot
generate T . On the other hand, since all irreducible elements of T must be in G, no reducible
elements can be in G. Hence we have proved a bijection between the union-closed sets T and
the generating sets G.

We now claim that for any set A ⊆ P(S), at most one of A and B = P(S)\A is a generating
set. Suppose otherwise. WLOG, we may assume that S ∈ A. To prevent S from becoming
reducible in A, there must be some number which does not appear in any other element of
A. WLOG, assume this is 1 ∈ S. Then all other subsets of S containing 1 must appear in
B. However, this includes {1, 2}, {1, 3}, and {1, 2, 3}, and hence B cannot be a generating set.
This shows that at most half of all sets can be generating sets.

Finally, note that if A = {{1}, {2}, {1, 2}}, then {3}, {4}, {3, 4} ∈ B. In this case, neither A
nor B are generating sets. Hence strictly less than half of all possible sets are generating sets.

Solution 4. (solution by Harun Khan)

Let U ⊂ P(P(S)) be the set of all union-closed sets. Let I ⊂ U be the set of all collections
whose elements have pairwise different cardinalities (including the one set collections).

Now construct a function f : U\I → U c as follows. Take a set A ∈ U\I. Consider all possible
k ∈ {0, . . . , 10} such that the number of k element sets in A is 1. Start with the maximum k and
suppose B ∈ A such that |B| = k. Check whether there exist P,Q ∈ A, such that B = P ∪Q
and P,Q 6= B then assign f(A) = A\{B} and terminate the process. Clearly A\{B} ∈ U c.
Otherwise, check the next largest k and repeat. We claim that this process always terminates.
Indeed, since A ∈ U\I, there exist P,Q ∈ A such that P 6= Q and |P | = |Q|. Then P ∪Q ∈ A
and |P ∪Q| > |P |. If there is another set with |P ∪Q| elements in A, then we repeat this. Since
a set in A has a maximum of 10 elements, this will eventually stop and we will have a set in A
that is the union of 2 non-empty sets in A that is unique in terms of its size (unique in A)

Now it is easy to see that f is injective. Suppose f(A) = f(B). Further, suppose A =
f(A) ∪ {X} and B = f(A) ∪ {Y }. We have X = P1 ∪ Q1 and Y = P2 ∪ Q2. If X 6= Y then
f(A) does not contain X,Y . So f(A) ∪ {X} doesn’t contain Y . But it contains P2, Q2 (since
these are different from Y ). So f(A) ∪ {X} is not union-closed and we have a contradiction.

Now let’s bound the codomain of f . Consider all sets that contain {1}, {2}, {3} and do not
contain {1, 2}, {1, 3}. There are 21019 such sets. Moreover these sets cannot be in the codomain
of f since we need to add at least 2 sets in order to ensure they’re union-closed. So the codomain
of f is bounded above by |U c| − 21019.

Lastly we can bound |I| as follows

|I| <
10∏
i=0

((
10

i

)
+ 1

)
<

10∏
i=0

28 = 288
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since for every cardinality i ∈ {0, ..., 10} there are
(
10
i

)
choices of sets of cardinality i and one

additional choice of not including a set of cardinality i.
Putting this all together, we get |U | = |U\I|+ |I| ≤ 21024 − |U | − 21019 + 288, and so

|U | ≤ 21023 − 21018 + 287 < 21023.

Solution 5. (solution by contestants)

We show that there are at most 2896 union-closed sets T . Firstly, we compute that if S =
{1, 2, 3}, then there are exactly 122 union-closed sets T .

• Suppose that T does not contain {1, 2, 3}. We note that the following T are union-closed:

• If the union of all elements in T is exactly ∅. Then we have 2 choices: we can choose
to include or exclude the empty set.

• If the union of all elements in T is exactly one of {1}, {2}, or {3}. Then we have
3 × 2 = 6 choices: for each choice of A = 1, 2, or 3, we must include exactly {A},
and we can choose to include or exclude the empty set.

• If the union of all elements in T is exactly {1, 2}, {2, 3}, or {3, 1}. Then we have
3× 4× 2 = 24 choices: for each choice of (A,B) = (1, 2), (2, 3) or (3, 1), we can have
{{AB}}, {{AB}, {A}}, {{AB}, {B}}, {{AB}, {A}, {B}}, and then we can choose
to include or exclude the empty set. (We could also have {{A}, {B}}, but note that
as this set does not include {A,B}, it is not union-closed.)

• If the union of all elements in T is {1, 2, 3}. This is a contradiction, and hence there
are no union-closed T in this case.

We conclude that exactly 32 out of 128 possible T which do not contain {1, 2, 3} are
union-closed.

• Suppose that T does contain {1, 2, 3}. Then the following are union-closed:

• If T contains none of {1}, {2}, or {3}, then we have 24 = 16 choices: we can choose
to include or exclude {1, 2}, {2, 3}, {3, 1}, and ∅.

• If T contains exactly one of {1}, {2}, or {3}, then we have 3× 16 = 48 choices: for
each choice of {1}, {2}, or {3}, we can choose to include or exclude {1, 2}, {2, 3},
{3, 1}, and ∅.

• If T contains exactly two of {1}, {2}, {3}, then we have 3× 8 = 24 choices: for each
choice of (A,B,C) = (1, 2, 3), (2, 3, 1) or (3, 1, 2), including {A} and {B} means we
must include {A,B}, but we can still choose to include or exclude {A,C}, {B,C},
and ∅.

• If T contains all of {1}, {2}, {3}, then it must also contain {1, 2}, {2, 3}, and {3, 1}.
Hence we have two choices: we can choose to include or exclude ∅.

Hence in this case we see that there are 16 + 48 + 24 + 2 = 90 union-closed sets.

We have shown that there are exactly 122 union-closed sets when S = {1, 2, 3}. We now return
to the case where S = {1, 2, 3, . . . , 10}. For any union-closed set T , partition T into TA over all
subsets A ⊆ {4, 5, 6, 7, 8, 9, 10}, where TA = {R ∈ T : A = R ∪ {4, 5, 6, 7, 8, 9, 10}}. There are
128 partitions, and each partition has at most 8 elements, which differ only in the combinations
of 1, 2, and 3 they include. For T to be union-closed, each TA must be union-closed for all
A. Since there are 122 possible union-closed configurations for each TA, and there are 128
partitions, there must be at most 122128 < 128128 = 2896 union-closed T .
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Problem 2. (proposed by Harun Khan)

Let p > 3 be a prime number. A sequence of p − 1 integers a1, a2, . . . , ap−1 is called wonky if
they are distinct modulo p and aiai+2 6≡ a2i+1 (mod p) for all i ∈ {1, 2, . . . , p−1}, where ap = a1
and ap+1 = a2. Does there always exist a wonky sequence such that

a1a2, a1a2 + a2a3, . . . , a1a2 + · · ·+ ap−1a1,

are all distinct modulo p?

Notes on Marking. No marks were awarded for stating the correct answer. Some construc-
tions which appeared to work in fact only worked when 2 was a primitive root modulo p. In this
case, several marks were deducted, partly depending on the generality of the remaining cases
proved.

Solution 1. (solution by Harun Khan)

Throughout this solution all congruences are taken modulo p. Our construction will be ai ≡
1/i mod p. We now verify this construction works. Note that

ai ≡ aj =⇒ 1

i
≡ 1

j
=⇒ i ≡ j =⇒ i = j.

Then if k < p− 1,

k∑
j=1

ajaj+1 ≡
k∑

j=1

1

j(j + 1)
≡

k∑
j=1

1

j
− 1

j + 1
≡ 1− 1

k + 1

which are all distinct since

1− 1

k + 1
≡ 1− 1

m+ 1
=⇒ 1

k + 1
≡ 1

m+ 1
=⇒ k = m

Moreover
∑p−1

j=1 ajaj+1 ≡
∑p−2

j=1 ajaj+1 + ap−1a1 ≡ 1− 1

p− 1
− 1 ≡ 1. And 1− 1

k + 1
6≡ 1 ∀k so

this is distinct from all the previous terms. Finally if i < p− 2

aiai+2 ≡
1

i(i+ 2)
6≡ 1

i(i+ 2) + 1
≡ 1

(i+ 1)2
≡ a2i+1

Additionally if i ∈ {p− 2, p− 1}, aiai+2 ≡
−1

2
6≡ 1 since p 6= 3.

Solution 2. (solution by contestants)

Throughout this solution all congruences are taken modulo p. Let g be a primitive root of p.

Let ` =
p− 1

2
. Let

a2 = g a4 = g2 · · · ap−1 = g`,

a3 = g`+1 a5 = g`+2 · · · ap = g2`.
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First of all, the ai’s are all distinct since they are distinct powers of g. Next, we check that the
wonky condition holds. Note a1a3 ≡ g`+1 6≡ g2 ≡ a22. Now checking for all other even and odd
cases respectively,

a2ra2r+2 ≡ g2r+1 6≡ g2r ≡ g2`+2r ≡ a22r+1,

a2r+1a2r+3 ≡ g2`+2r+1 ≡ g2r+1 6≡ g2r+2 ≡ a22r+2.

Finally, note that for all 1 ≤ j ≤ p− 1,

j∑
i=1

aiai+1 ≡ g + g`+2 + g`+3 + · · ·+ g`+j

≡ g + g`+2 · g
j−1 − 1

g − 1
,

and hence,

j∑
i=1

aiai+1 ≡
k∑

i=1

aiai+1 ⇐⇒ g + g`+2 · g
j−1 − 1

g − 1
≡ g + g`+2 · g

k−1 − 1

g − 1

⇐⇒ gk−1 ≡ gj−1

⇐⇒ k = j
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Problem 3. (proposed by Cristi Calin)

Let f, g, h : R→ R be continuous functions andX be a random variable such that E(g(X)h(X)) =
0 and E(g(X)2) 6= 0 6= E(h(X)2). Prove that

E(f(X)2) ≥ E(f(X)g(X))2

E(g(X)2)
+
E(f(X)h(X))2

E(h(X)2)
.

You may assume that all expected values exist.

Solution 1. (solution by the ICMC Problem Committee)

As the expected value is an inner product, we can restate the problem in terms of linear algebra:
What we have to prove is that, for vectors f, g, h over a vector field V such that (g, h) = 0 and
(g, g) 6= 0, we have the following inequality:

||f ||2 ≥ (f, g)2

||g||2
+

(f, h)2

||h||2
(1)

Let y = f −λg−µh and note that (y, y) ≥ 0. Through the linearity of expectation and the fact
that (g, h) = 0, we obtain that

0 ≤ (y, y) = (f, f) + λ2(g, g) + µ2(h, h)− 2λ(f, g)− 2µ(f, h), ∀λ, µ ∈ R. (2)

Since the equation above works for any λ, µ, we can take λ = (f,g)
(g,g) and µ = (f,h)

(h,h) to finish.

Solution 2. (solution by Cristi Calin)

We consider vectors again. For any λ ∈ R, we have λ(f, g) = (g, h + λf) ≤ ||g|| · ||h + λf ||,
by Cauchy. Squaring, we obtain that λ2(f, g)2 ≤ ||g||2 · ||h+ λf ||2. Now dividing by ||g||2 6= 0
yields

λ2
(f, g)2

||g||2
≤ ||h+ λf ||2 = ||h||2 + 2λ(f, h) + λ2||f ||2.

We can take everything on the right side, to obtain that

λ2(||f ||2 − (f, g)2

||g||2
) + 2λ(f, h) + ||h||2 ≥ 0, (3)

for all λ ∈ R. We consider this a quadratic equation in λ, and use the fact that, for the equation
to always be positive, we need the discriminant to be smaller or equal to 0. We conlcude that

||f ||2 − (f,h)2

||h||2 ≥
(f,g)2

||g||2 , which solves the problem.

The proofs work for any inner product space, so instead of writing the inner product, we can
apply the expected value from probability, or the integral from 0 to 2π, and the proof remains
exactly the same. This problem was also proved in the Lean theorem prover – you can find a
link to the proof here.
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Problem 4. (proposed by Tony Wang)

Let R2 denote the Euclidean plane. A continuous function f : R2 → R2 maps circles to circles.
(A point is not a circle.) Prove that it maps lines to lines.

Notes on Marking. A common mistake was to assume that it suffices to prove that f pre-
serves collinearity. This does not prove that f maps lines to lines, but 6 marks were awarded
for proving this without proving that f was injective or surjective. Surprisingly, there do not
appear to be any solutions based on an inversion or even a stereographic projection, so no marks
were awarded for considering these. Proofs that lines mapped onto subsets of either circles or
lines (worth 2 marks) was done with varying degrees of rigour. The markers felt that the rigour
was necessary, so 1 mark was deducted for vagueness.

Solution 1. (solution by Tony Wang)

In this proof, we use the notation X ′ := f(X). The proof can be broken down into four main
steps.

• f is injective: Suppose that A and B are distinct points such that A′ = B′. Since the
range of the function is at least a circle, which is an uncountable set, there must exist
points P and Q so that A, B, P , Q lie in general position, and A′, P ′, Q′ are distinct. Let
C1 be the circle passing through APQ and C2 be the circle passing through BPQ. Note
that C′1 and C′2 both map to the circumcircle C′ of A′P ′Q′, which must exist.

Now, since f is continuous, there exists a neighbourhood N of P on C1 which maps to
a subset of C′\{A′, Q′}. Consider a perturbation of the circle C2, such that it still passes
through B and Q, but now passes through a point in N distinct from P . Each of these
circles in the perturbation must then also map to C′ by the same argument as above.
Hence, this perturbation creates a region R such that f(R) = C′. However, note that
any circle contained entirely within R must then also map to exactly C′. This implies
that there are arbitrarily small circles which map to C′, contradicting the continuity of f .
Hence f is injective.

• f is surjective: Since f is injective, we now know that C′1 and C′2 must intersect only at
P ′ and Q′. Let X,Y ∈ C2 so that C1 separates X from Y . By injective continuity we can
deduce that C′1 separates arc P ′X ′Q′ from arc P ′Y ′Q′, and hence X ′ from Y ′. Let the
intersection of X ′Y ′ with C′1 be R′ and S′. WLOG, assume that S is not an intersection
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of XY with C1, then the circumcircle of XY S must map to the circumcircle of X ′Y ′S′, a
contradiction. Hence R and S must be the intersection of XY with C1.

C01
f P 0

Q0

C1
C2

C02
P

Q

X

Y

Y 0

X 0R

S

Z 0
U

S 0

R0

U 0

Consider any point Z ′ not on the line X ′Y ′. Let the circumcircle of X ′Y ′Z ′ intersect C′1
at U ′. We know this intersection point exists because the circumcircle of X ′Y ′Z ′ passes
through X ′ and Y ′, which are separated by C′1. Since f is injective, U is distinct from S
and R, and hence the circumcircle of XY U which must map to the circumcircle of X ′Y ′U ′,
which passes through Z ′. Hence any point Z ′ not on the line X ′Y ′ is in the image of f .
Repeating this argument replacing X with a different point W on the arc PXQ shows
that every point is in the image of f . This proves that f is surjective and thus bijective.

• f preserves collinearity: Above, we proved that the family of circles passing through
X ′ and Y ′ is mapped to by some circle passing through X and Y . Conversely, any circle
passing through X and Y must map to a circle passing through X ′ and Y ′. Hence, the
family of circles passing through X and Y maps to the family of circles passing through
X ′ and Y ′. Since f is bijective the complement of the family must map to the complement
of the image family. This shows that for any point T on the line XY , T ′ must lie on the
line X ′Y ′.

• f maps lines to lines: Finally, since f is bijective and preserves collinearity, a line `
must map to a subset `′ of a line L′. Let T ′ ∈ L′. If T ′ /∈ `′, then T must lie off the lie `.
Consider a circle passing through T and two points D,E ∈ `. This must map to a circle,
but T ′D′E′ forms a line, a contradiction. Hence, lines must map to lines.

Additionally, note that as f is bijective, parallel lines map to parallel lines. Some more analysis
(or some theory) shows that f must be an affine map, but the only affine maps that map circles
to circles are the maps generated by isometries and dilations. These maps also clearly work,
and hence we have completely characterised f .
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