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Problem 1. (proposed by Tony Wang)

Let S be a set of 2022 lines in the plane, no two parallel, no three concurrent. S divides the
plane into finite regions and infinite regions. Is it possible for all the finite regions to have
integer area?

Notes on Marking. No marks were given for a correct answer by itself. Candidates lost 2
points for an incorrect proof that the area of a polygon with rational coordinates is rational.

Solution 1. (solution by Ming Yean Lim)

We show that the answer is yes. Arbitrarily choose 2022 lines Li passing through two rational
points such that no two are parallel and no three concurrent. Then any two such pair of lines
intersect at a point with rational coordinates. The finite regions are polygons whose vertices
have rational coordinates, hence they have rational area.∗ Now we may clear denominators by
rescaling.

Concretely, let d be the lowest common multiple of the denominators of the areas and suppose
that the line Li is given by aix+ biy = ci. Then define L′

i by (ai/d)x+ (bi/d)y = ci. Now the
area of each finite region of the plane partitioned by L′

i is d
2 times the original area.

∗This can be seen in a number of different ways, including taking the bounding box and removing triangles,
triangulating the polygon directly, using shoelace formula, etc.
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Problem 2. (proposed by Ethan Tan)

Evaluate
1/2

1 +
√
2
+

1/4

1 + 4
√
2
+

1/8

1 + 8
√
2
+

1/16

1 + 16
√
2
+ · · ·

Notes on Marking. This problem essentially had two parts, the first of which could be solved
by either rationalising or telescoping. Candidates received 4 points for rationalising and sim-
plifying the numerator, and 5 points for showing that the sum is telescoping. Some candidates
scored 2 points for rationalising but leaving the numerator as a product of polynomials. Some
candidates lost a point for the wrong answer but the right method.

Solution 1. (solution by Simeon Kiflie)

Let an be the nth term of this series, Sn the nth partial sum, and S the limit of partial sums.
By rationalising the denominator of an, it can be shown that

an =
2−n

22−n + 1
= −2−n

2n−1∑
k=0

(
−22

−n
)k

.

Summing the first n terms with 1 and using the geometric series formula gives

Sn + 1 = 2−n
2n−1∑
k=0

(
22

−n
)k

=
2−n

22−n − 1
.

By substituting x = 2−n and using L’Hôpital’s rule, it follows that

S + 1 = lim
x→0

(
x

2x − 1

)
= lim

x→0

(
1

2x ln 2

)
=

1

ln 2

and so S =
1

ln 2
− 1.

Solution 2. (solution by Julian Yu)

As in solution 1, we find that

Sn + 1 =
1

2n

2n−1∑
k=0

(
22

−n
)k

.

However, note that this sum is the same as the lower Riemann sum of the function f(x) = 2x

over the interval [0, 1], with respect to the partition

P = [0, 1× 2−n, 2× 2−n, 3× 2−n, . . . , 1].

Hence, taking the limit as n → ∞, we find that

S + 1 =

∫ 1

0
2x dx

and so S =
1

ln 2
− 1.
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Solution 3. (solution by Ming Yean Lim)

Observe that
1/2n+1

1 + 21/2n+1 =
1/2n

1− 21/2n
− 1/2n+1

1− 21/2n+1 .

Therefore, the sum is

∞∑
n=0

1/2n+1

1 + 21/2n+1 = lim
N→∞

N∑
n=0

(
1/2n

1− 21/2n
− 1/2n+1

1− 21/2n+1

)
= lim

N→∞
−1− 1/2N+1

1− 21/2N+1

= −1 + lim
N→∞

1/2N+1

21/2N+1 − 1
.

As in Solution 1, we may use L’Hôpital’s rule to evaluate the last limit, yielding
1

ln(2)
− 1.
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Problem 3. (proposed by Ethan Tan)

A set of points has point symmetry if a reflection in some point maps the set to itself. Let P be
a solid convex polyhedron whose orthogonal projections onto any plane have point symmetry.
Prove that P has point symmetry.

Notes on Marking. Many students assumed incorrect properties about projections and the
objects they commute with. For instance, it is not true that the vertices of the projection of
the polyhedron match one-to-one with the vertices of the polyhedron, because vertices of the
polyhedron can project to the interior of the polygon, and become “hidden”. In particular, one
cannot assume that the projections of vertices as a set of points have point symmetry. It is
also not true that the centre of mass commutes with projection, either for the centre of mass
of vertices (not all vertices map to vertices of the polyhedron), or for the centre of mass of the
entire solid body (this is false for most polyhedra). Some students found characterisations of
the centre of the polyhedron conducive to some complete solutions (e.g. midpoint of diameter,
or intersection of pre-images of centres of projections), and were awarded marks for these.

Solution 1. (solution by Ethan Tan)

Let πv denote the projection onto a plane perpendicular to v. Then πv(P ) has a centre Ov for
all v; let ℓv, be the line parallel to v passing through Ov.

Let zmin, zmax be the highest z-coordinates that P attains. For all v parallel to the xy-plane,
ℓv has z-coordinate (zmin + zmax)/2, so they all intersect. Since the choice of z-direction is
arbitrary, we see any two ℓv intersect. Then ℓx, ℓy, ℓz (parallel to the x, y, z-axes) pairwise
intersect, and hence all intersect in the same point O. All other ℓv intersect these three lines,
and so must also pass through O.

Choose O to be our origin. Suppose for contradiction there is a vertex P of P such that
−P ̸∈ P. Let Π be the plane through P perpendicular to OP . Then −Π ∩ P = X is convex
(or empty), and does not contain −P . Hence there exists a line γ in −Π through −P , not
intersecting P.

Since ℓγ passes through O, we have πγ(O) is the centre of πγ(P). Take this as the origin for
πγ(P). Then −πγ(P ) = πγ(−P ) /∈ πγ(P), i.e. πγ(P) does not have centre πγ(O), contradiction.

Solution 2. (solution by Tony Wang)

If a set S is to have point symmetry, then the center of symmetry must be the midpoint of a
diameter of S, since otherwise reflection of the diameter will create a greater diameter, which is
a contradiction. So, let PQ be a diameter of P and let M be the midpoint of PQ. We proceed
by contradiction.

Let X be a point on the boundary of P and Y be the second intersection of XM with the
boundary of P. Then since we are arguing by contradiction, there must exist an X so that
XM > MY . Consider the plane perpendicular to XY , and let ℓ be its intersection with the
plane of a face that Y is on. This intersection must exist, lest P not be convex. Project P
orthogonally by ℓ (or any line in ℓ, if it is a plane), and denote this projection by ·′. Note that
P ′Q′ is still a diameter of P ′, and so the center of symmetry of P ′ would still have to be M ′.
However, XM

MY = X′M ′

M ′Y ′ , and Y ′ is still on the boundary of P ′, whereas X ′ may now be in the
interior of P ′. In any case, denoting the second intersection of Y ′M ′ with the boundary of P ′
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by Z ′, we actually have Z′M ′

M ′Y ′ ≥ X′M ′

M ′Y ′ = XM
MY > 1, and hence Z ′M ′ > M ′Y ′. This implies that

P ′ cannot be point symmetric, a contradiction.

Solution 3. (solution by Harun Khan)

Consider an edge UV of the polyhedron where U, V are vertices. Consider a plane PUV not
parallel to any face of P and containing UV such that PUV ∩ P = UV . Project along a line
parallel to PUV and perpendicular to UV , and call this projection π1. As all projections are
point symmetric, there exist two unique vertices U ′, V ′ ∈ P such that π1(U

′) and π1(V
′) is

point symmetric to π1(U) and π1(V ), respectively. We can draw a plane P ′ parallel to PUV and
containing U ′V ′ where P ′ ∩ P = U ′V ′ because PUV is not parallel to any face of P.

We will now show that U ′V ′ is parallel and equal in length to UV . We project along a
different line contained in PUV and not parallel to UV or U ′V ′. This projection by π2 takes U, V
to π2(U), π2(V ) which is symmetric to some π2(U)′, π2(V )′ respectively in the plane. Inverting
π2 at π2(U)′, π2(V )′ we get a point U ′′, V ′′ that must lie in P ′∪P = U ′V ′. (Here we use the fact
that two parallel edges in a point-symmetric polygon have symmetric endpoints.) Hence, since
orientation is preserved, U ′′ = U ′ and V ′′ = V ′. This argument shows only one such possible
line segment works, (and a line segment equal in length and parallel to UV would work) hence
U ′V ′ must be parallel and equal in length to UV .

The last caveat is that vertices belonging to two edges might be symmetric to different points
for each edge. Let’s show this is not possible. Take two adjacent edges UV and VW . Take
the projection π along the line of intersection between the two planes PUV and PVW as our
choice of π2 for both UV and VW . Hence this projection ’glues’ U ′V ′ to V ′W ′. This proves the
existence of U ′, V ′,W ′ such that the midpoint of UU ′, the midpoint of V V ′ and the midpoint
of WW ′ are all the same. Applying this argument transitively to all vertices of P finishes the
problem.
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Problem 4. (proposed by Tony Wang and Ethan Tan)

Fix a set of integers S. An integer is clean if it is the sum of distinct elements of S in exactly
one way, and dirty otherwise. Prove that the set of dirty numbers is either empty or infinite.

Note: We consider the empty sum to equal 0.

Notes on Marking. Candidates who attempted this problem received 1 point for proving
that if an integer has two representations then there are infinitely many dirty integers (which
is needed in solutions 2 and 3). Some candidates were awarded an additional point for showing
that if a, b are clean with |a−b| = s for s ∈ S then a and b differ in s-dependence, or statements
similar in nature. No marks were awarded for proving that S must be infinite.

Solution 1. (solution by Tony Wang)

We proceed by contradiction: suppose that the set of dirty numbers is non-empty but finite, and
let the greatest dirty number be M . For each clean number n, let the set of distinct elements
of S that sum to n be called its representation. Let n be called a-dependent if a is one of those
distinct elements, and a-free otherwise. Now, if n and n + a are both clean, then they must
differ in their a-dependence, for if both are a-dependent then we can remove a from n + a to
achieve a second representation of n, and if both are a-free we can add a to the representation
of n to achieve a second representation of n+ a.

We now prove an important lemma: for distinct a, b ∈ S, ν2(a) ̸= ν2(b). To prove this,
suppose that a ̸= b but ν2(a) = ν2(b) = e. Let N be an a, b-free number much greater than M
(if N contains a or b in its representation, then we can simply remove them to obtain a new N).
Now, letting d = lcm(a, b), note that if n > M , then n and n + 3d must differ in both a- and
b-dependence, since 3d is an odd multiple of both a and b. Then, if n+3d is a, b-dependent, then
n+ 3d− a− b is a, b-free. So adding 3d− a− b > 0 to an a, b-free number gives a new a, b-free
number. This means that N + d

2e (3d − a − b) is a, b-free, but it is also equal to N + 3d−a−b
2e d,

which is a, b-dependent, a contradiction.
To finish, let W be a dirty number with the greatest 2-adic valuation, and let w = ν2(W ).

It follows that every integer with a greater 2-adic valuation is clean. We know from the above
lemma that there is at most one element x ∈ S with with ν2(x) = w, but since some integers
of 2-adic valuation w are clean, x must exist. Now consider the representations of W : any such
representation must contain x as the member of the representation with the smallest 2-adic
valuation. Removing x from these representations, we obtain representations of W −x. But we
know W − x to be clean, since ν2(W − x) > w, and so W has exactly one representation: the
union of x with the representation of W − x. Thus W is clean, a contradiction.

Solution 2. (solution by contestants)

We start in the same way as solution 1: importantly, we exploit the fact that if n and n+ a are
both clean, then they must differ in their a-dependence.

Now pick a dirty x ∈ Z. Since S is infinite and the set of dirty numbers is finite, there must
exist s ∈ S such that both x − s and x + s are clean. Likewise, there must exist some t ∈ S
such that x− s+ t, x+ t, and x+ s+ t are all clean and t is not in the representation of either
x− s or x+ s. Note that no integer can have more than one representation. If some y ∈ Z has
multiple representations

y = a1 + . . .+ an = b1 + . . .+ bm,
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then for any u ∈ S\{a1, . . . , an, b1, . . . , bm}, y + u will have multiple representations. Hence
there are an infinite number of dirty integers. Now assume that no integer has multiple repre-
sentations.

Hence x−s must be s-dependent, as otherwise we would get a representation of x. Similarly,
x+s must be s-free. Now x−s+t must be s- and t-dependent, and x+s+t must be t-dependent
but s-free. But now x + t must be s-dependent (going down from x + s + t), but also s-free
(going up from x− s+ t), a contradiction.

Thus, there are either no dirty numbers or an infinite number of them.

Solution 3. (solution by contestants)

As in solution 2, if some y ∈ Z has multiple representations

y = a1 + . . .+ an = b1 + . . .+ bm,

then for any u ∈ S\{a1, . . . , an, b1, . . . , bm}, y + u will have multiple representations. Hence
there are an infinite number of dirty integers.

Thus we can assume that no integer has multiple representations. Clearly S is infinite and
countable, so write S = {s1, s2, . . .}. Denote by Sn to be the set of sum of elements of subsets
of {s1, . . . , sn}. Note that for any n < m, we have Sn ⊂ Sm. Suppose by contradiction that
the set of dirty numbers is nonempty but finite. Let a and b be the smallest and largest dirty
numbers, respectively. For a finite A ⊂ Z denote by range(A) = max(A)−min(A). Clearly the
sequence range(Sn) tends to infinity as n goes to infinity.

Let c1 = 2(b− a). Let N2 ∈ N∗ such that range(SN2) > 2c1 and let c2 = range(SN2)+ 1. We
will prove by induction the following:

• Lemma: For all n ≥ N2,∀k ∈ Sn,∃k′ ∈ Sn such that c1 < |k′ − k| < c2.

Proof. Let us start with n = N2 and fix k ∈ Sn. We have that

range(Sn) = max(Sn)−min(Sn) = (max(Sn)− k) + (k −min(Sn)).

Clearly at least one of max(Sn)− k and k −min(Sn) are at least range(Sn)/2, thus there
exists some k′ ∈ Sn such that |k′ − k| ≥ range(Sn)/2 > c1. Furthermore, we obviously
have |k′ − k| < c2 (as this happens for any difference of elements of SN2).

Now suppose that we proved the above for some n ≥ N2 and we will prove it for n+1. Fix
k ∈ Sn+1. k is clearly clean. If k contains sn+1 in its representation, then k − sn+1 ∈ Sn,
otherwise k ∈ Sn. If k − sn+1 ∈ Sn, then by induction hypothesis there is some k′ ∈ Sn

such that c1 < |k′−(k−sn+1)| < c2. Then k′+sn+1 ∈ Sn+1 and c1 < |(k′+sn+1)−k| < c2.
This finishes the induction.

Now take M = 100c2 and let N1 ∈ N∗ such that

a− 1, . . . , a−M, b+ 1, . . . , b+M ∈ SN1

(this exists as all of those numbers must be clean). Let c be a dirty integer, and pick N ∈ N∗

such that N > N1, N > N2 and sN > b − c +M (N exists as S is clearly unbounded). Then
we have that

a− 1, . . . , a−M, b+ 1, . . . , b+M ∈ SN1 ⊆ SN−1 =⇒
a+ sN − 1, . . . , a+ sN −M, b+ sN + 1, . . . , b+ sN +M ∈ SN .

Furthermore, we have c + sN > c + b − c + M = b + M > b, hence c + sN is clean. Since c
is dirty, c + sN /∈ SN . Let K be such that c + sN /∈ SK−1 and c + sN ∈ SK . Clearly we have
K > N . Hence c+ sN − sK ∈ SK−1.
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Now apply to this the previous lemma, and we will get some k ∈ SK−1 such that c1 < |(c+
sN−sK)−k| < c2. Since 2(b−a) < |(sK+k)−(c+sN )|, then either (sK+k)−(c+sN ) > 2(b−a),
or (sK +k)− (c+ sN ) < −2(b−a). In the first case, we get sK +k > 2(b−a)+ c+ sN ≥ b+ sN .
If sK + k > b+ sN +M , then (sK + k)− (c+ sN ) > b+ sN +M − c− sN ≥ M = 100c2 > c2,
contradiction. Similarly, in the second case, we get sK + k < −2(b − a) + c + sN ≤ a + sN . If
sK + k < a+ sN −M , then (sK + k)− (c+ sN ) < a+ sN −M − c− sN ≤ −M = −100c2 < −c2,
contradiction.

Thus sK + k is between a+ sN − 1 and a+ sN −M or between b+ sN + 1 and b+ sN +M .
Hence sK + k is either some a+ sN − t or some b+ sN + t for some 1 ≤ t ≤ M . But k ∈ SK−1,
hence sK + k has a representation containing sK , but as a+ sN − t and b+ sN + t are all in SN ,
it also has a representation without sK (as K > N). This is a contradiction, which finishes the
proof.
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Problem 5. (proposed by Ethan Tan)

A robot on the number line starts at 1. During the first minute, the robot writes down the
number 1. Each minute thereafter, it moves by one, either left or right, with equal probability.
It then multiplies the last number it wrote by n/t, where n is the number it just moved to, and
t is the number of minutes elapsed. It then writes this number down. For example, if the robot
moves right during the second minute, it would write down 2/2 = 1.

Find the expected sum of all numbers it writes down, given that it is finite.

Notes on Marking. A mark was awarded for considering linearity of expectation, observing
the similarity to a Taylor series expansion, or considering generating functions.

Solution 1. (solution by Ethan Tan)

Instead of letting the robot go left and right with equal probability, we allow it to split into two
robots, one going left and one going right. Each robot, upon reaching n, then clones itself to
become n robots. It is clear by linearity of expectation that the answer to the original problem
is now

∞∑
t=1

rt
2t−1 · t!

,

where rt is the number of robots at the end of the tth second. (r1 = 1, and the 2t−1 term comes
from replacing moving left or right with equal chance by splitting into two.)

We also let the robot have two arms, each of length 1, on either side of the robot. A robot
at n at time t becomes n− 1 robots at n− 1 and n+1 robots at n+1 at time t+1. This robot
at time t contributes one hand at n − 1 and one hand at n + 1, which at time t + 1 becomes
n− 1 hands at n− 2, (n− 1) + (n+ 1) hands at n, and n+ 1 hands at n+ 2.

So we can see that any hand at position k at time t becomes in k hands at k−1 and k hands
at k + 1 at time t+ 1. We now encode this information with the following key identity:

d

dx
un = n(un−1 + un+1), where u = tanx. (†)

At time t, assign each hand at position k with the value uk = tank(x), and let the total value
at time t be vt(x). Note tan(π/4) = 1, so

vt(π/4) = (# hands at time t) = 2rt.

But we know by (†) that vt+1(x) = v′t(x), so that vt+1(x) =
dt

dxt v1(x). Let f(x) = tan(x); we
have v1(x) = 1 + tan2(x) = f ′(x). Then

∞∑
t=1

rt
2t−1 · t!

=
1

2

∞∑
t=1

vt(π/4)

t!

(
1

2

)t−1

=
∞∑
t=1

f (t)(π/4)

t!

(
1

2

)t

=

[ ∞∑
t=0

f (t)(π/4)

t!

(
1

2

)t
]
− f(π/4),

which by Taylor expansion is equal to

f

(
π

4
+

1

2

)
− f(π/4) = tan

(
π

4
+

1

2

)
− 1

= sec(1) + tan(1)− 1.
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