Functions - Answer sheet

Team: \square

Referee:

F1

Consider the function f_{1} from $\{1, \ldots, 7\} \times\{1, \ldots, 7\}$ to the positive integers.

Inputs 1:
Inputs 2:
Outputs:

Description:

F2

Consider the function f_{2} from $\{1, \ldots, 7\} \times\{1, \ldots, 7\}$ to the positive integers.

Inputs 1:
Inputs 2:
Outputs:

Description: \square

F3

Consider the function f_{3} from $\{1, \ldots, 100\}$ to the positive integers.

F4
Consider the function f_{4} from $\{1, \ldots, 100\}$ to the positive integers.

Description:

F5

Consider the function f_{5} from $\{1, \ldots, 100\}$ to the positive integers.

Inputs:
Outputs:

\square

Shuttle - A1 And A3

A1

The polynomial $1-x+x^{2}-x^{3}+\cdots-x^{9}+x^{10}$ may be written in the form $a_{0}+a_{1} y+$ $a_{2} y^{2}+\cdots+a_{9} y^{9}+a_{10} y^{10}$, where $y=x+1$ and the a_{i} 's are constants. Find the value of a_{8}.

Pass on your answer to A1 as X.

A3

Y is the number you will receive.
Find the number of integers a such that $1<a<Y$ and $n^{a}-n$ is divisible by 21 for all positive integers n.

Pass on your answer to A3 as Z.

Shuttle - A2 and A4

A2

X is the number you will receive.
Except for the first two terms, each term of the sequence $X, Y, X-Y, \ldots$ is obtained by subtracting the previous term from the term before that. Find the integer Y such that the first negative term in this sequence occurs as late as possible.

Pass on Y as your answer to A2.

A4

Z is the number you will receive.
An artist hangs his 2-metre-wide artwork on a wall so that the edge of the artwork touches a corner in the wall. Z art surveyors are viewing the artwork 4 metres from the wall. However, due to COVID restrictions, the art surveyors are also standing 2 metres apart from each other. Find, in degrees, the maximum sum of the viewing angles each surveyor can get.

Pass on your answer to A4.

Shuttle - B1 and B3

B1

The sum of the terms of an infinite geometric series is 2 and the sum of squares of the terms is 6 . The sum of the cubes of the terms can be written as $\frac{m}{n}$ where m, n are relatively prime positive integers. Find $m+n$.

Pass on your answer to B1 as X.

B3

Y is the number you will receive.
In triangle $A B C, A B=Y, B C=Y+1$, and $C A=Y+2$. Distinct points D, E, and F lie on segments $\overline{B C}, \overline{C A}$, and $\overline{D E}$, respectively, such that $\overline{A D} \perp \overline{B C}, \overline{D E} \perp \overline{A C}$, and $\overline{A F} \perp \overline{B F}$. The length of segment $\overline{D F}$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. What is $40 m+10 n$?

Pass on your answer to B 3 as Z.

Shuttle - B2 and B4

B2

X is the number you will receive.
Find the smallest odd prime factor of $X^{7}+1$.

Pass on your answer to B2 as Y.

B4

Z is the number you will receive.
Consider an equilateral triangle with side Z. Suppose that one move consists of changing the length of any of the sides of a triangle such that the result will still be a triangle. Find the minimum number of moves to change the given triangle to an equilateral triangle with side 2 .

Pass on your answer to B4.

Shuttle - Answer sheet A

Shuttle - Answer sheet B

Relay - R1

Let $d(n)$ denote the number of digits of n in base 10. Find $d\left(2^{420}\right)+d\left(5^{420}\right)$.

First attempt

Second attempt
\square

Relay - R2

Team: \qquad

Let $a_{1}=\frac{1}{2}, a_{2}=\frac{1}{\sqrt{2}}$, and for $n>2$,

$$
a_{n}=a_{n-1} \sqrt{1-a_{n-2}^{2}}-a_{n-2} \sqrt{1-a_{n-1}^{2}}
$$

Find a_{2022}.

First attempt

Let S be the collection of all possible subsets of $\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{2022}\right\}$. Then, if A is a set of rational numbers, the function $f(A)$ returns the product of all the elements of A, where the empty set has product 1 . What is the average value of f over all elements of S ?

First attempt

Second attempt

Relay - R4

How many integer-sided triangles (up to congruency) have area 999/2?
Team:

Second attempt

First attempt
\qquad

Relay R5

The numbers $2,4,8, \ldots, 2^{2022}$ are placed randomly in a 6×337 grid. Let R_{i} be the sum of the $i^{\text {th }}$ row, and C_{j} be the sum of the $j^{\text {th }}$ column. What is the probability that the R_{i} and C_{j} are both in strictly increasing order?

First attempt

Second attempt

Relay - R6

Team: \qquad

Find

$$
\sum_{0 \leq n-2022 \leq k \leq 2022}\binom{n}{k} .
$$

Crossnumber - Across

Across

2. The number of positive integers that divide $10^{10}, 12^{12}$ or 15^{15}.
3. The number of 8-digit numbers with at most 2 distinct digits such that the first and third digits are 5.
4. A number whose last digit is the square of its first digit.
5. The number of integral solutions to $x^{2}+y^{2}=221$.
6. The value of $(6 \tan (x))^{4}$ when $(6 \cos (x))^{3}=(6 \sin (x))^{2}, 0<x<\frac{\pi}{2}$.
7. The dimension of the space of 29×29 symmetric matrices with zeros on the antidiagonal.
8. A prime number of the form $p=2^{2^{n}}+1$.
9. The difference between 5 Down and 12 Down.
10. A number whose sequence of digits is decreasing by 2 .

Crossnumber - Down

1		2				3
4					5	
					6	
7	8					

Down

1. The largest multiple of 27 with all digits distinct and odd.
2. A third of the product of 4 Across and 5 Down.
3. The smallest $n=p q$ with p, q prime such that $(p+1)(q+1)$ reverses its digits.
4. The last two digits of 6^{2022}.
5. The volume of the region enclosed by the surfaces $x^{2}+z^{2}=9$ and $y^{2}+z^{2}=9$.
6. The sum of two consecutive 4th powers.
7. The integer $n<2022$ such that $2022^{3}=n p+1, p$ prime.
8. The number whose digits do not appear elsewhere on this crossnumber.

Crossnumber - Answer sheet

Totals

/5
/5
/4
/6
/4
/4
/6

