IMPERIAL-CAMBRIDGE
MATHEMATICS COMPETITION

ROUND ONE

26-27 November 2022

smomerdup DRII

Name: \qquad

Contestant Number: \qquad

University: \qquad

Instructions:

- Do not turn over until told to do so
- You will have 3 hours to solve 6 problems, each of which carries 10 marks.
- Use a black or blue pen or a dark pencil. Rulers, compasses, protractors, and erasers may be used but will not be required. All electronic devices, including calculators, are prohibited.
- Drinks are allowed, but food is prohibited.
- Write your solution to each problem on a different page. At the top of each page, write down the question number, your initials, and your contestant number. Use both sides whenever possible. Writing clearly and not too faintly - your work will be scanned for marking.
- Problems are listed roughly in order of difficulty. Proofs are expected for all problems even if they only ask for an answer.
- One complete solution will be awarded more marks than several unfinished attempts.
- Do not take away the problems sheet or any rough work when leaving the venue.

Declaration:

I hereby declare that the work I am submitting is entirely my own, and that I will not discuss or disclose the contents of this paper until 23:00, 27 November 2022, GMT Time.

Signature: \qquad

Problem 1. Two straight lines divide a square of side length 1 into four regions. Show that at least one of the regions has a perimeter greater than or equal to 2 .

Problem 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)>f(x)>0$ for all real numbers x. Show that $f(8)>2022 f(0)$.

Problem 3. Bugs Bunny plays a game in the Euclidean plane. At the n-th minute $(n \geq 1)$, Bugs Bunny hops a distance of F_{n} in the North, South, East, or West direction, where F_{n} is the n-th Fibonacci number (defined by $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$). If the first two hops were perpendicular, prove that Bugs Bunny can never return to where he started.

Problem 4. Let G be a simple graph with n vertices and m edges such that no two cycles share an edge. Prove that $2 m<3 n$.

Note: A simple graph is a graph with at most one edge between any two vertices and no edges from any vertex to itself. A cycle is a sequence of distinct vertices v_{1}, \ldots, v_{n} such that there is an edge between any two consecutive vertices, and between v_{n} and v_{1}.

Problem 5. Let $[0,1]$ be the set $\{x \in \mathbb{R}: 0 \leq x \leq 1\}$. Does there exist a continuous function $g:[0,1] \rightarrow[0,1]$ such that no line intersects the graph of g infinitely many times, but for any positive integer n there is a line intersecting g more than n times?

Problem 6. Consider the sequence defined by $a_{1}=2022$ and $a_{n+1}=a_{n}+e^{-a_{n}}$ for $n \geq 1$. Prove that there exists a positive real number r for which the sequence

$$
\left\{r a_{1}\right\},\left\{r a_{10}\right\},\left\{r a_{100}\right\}, \ldots
$$

converges.
Note: $\{x\}=x-\lfloor x\rfloor$ denotes the part of x after the decimal point.

