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Problem 1. (proposed by Dylan Toh)

Two straight lines divide a square of side length 1 into four regions. Show that at least one of
the regions has a perimeter greater than or equal to 2.

Notes on Marking. In Solution 1, 6 marks were assigned to the case when each side of the
square is intersected by one of the diving lines (case 1), and 4 marks were assigned to the other
case (case 2). However, when only one case was proven, and there was no evidence that the
contestant was aware of the other case, one mark was deducted. Unfortunately, this resulted in
many contestants being awarded 5 marks. In some cases, either due to diagram dependency or
neglect, certain cases or subcases were not addressed. (This included the case where the two
dividing lines both intersected the same two adjacent sides, and the case where the two dividing
lines intersected the same two opposite sides.) Where a subcase was missing, one mark was
deducted.

While the isoperimetric inequality could be assumed without proof, the lemma that a triangle
or square with fixed area attains minimum perimeter when regular could not be assumed (indeed,
it is not the isoperimetric inequality.) Where the lemma was used to prove case 1, 2 marks were
awarded for proving the triangular or quadrilateral sublemma, or 4 marks for the entire lemma,
and 2 further marks were awarded for a proof of case 1 assuming the lemma. Contestants who
stated that there was a region with area greater than 1/4 (or equivalent) were awarded 1 mark.

The markers are not aware of any way to prove that the “optimum” case occurs when the
perimeters or areas of all regions are equal, when the intersection is at the center of the square,
when the two lines are perpendicular, or indeed when the two lines are axis-aligned and intersect
at the center of the square, so no marks were awarded for stating any of these. The markers are
also not aware of any solution deriving from perturbations (translations or rotations of lines)
from the equality case.

Solution 1. (solution by Dylan Toh)

Let ABCD be the unit square. If some side (WLOG side AB) is not intersected by any line,
then it is the side of some polygonal region R = ABP1 . . . Pk. By triangle inequality,

|AP1|+ |P1P2|+ · · ·+ |Pk−1Pk|+ |PkB| ≥ |AB| = 1,

thus the perimeter of R is ≥ 2 · |AB| = 2.
Otherwise, each side AB,BC,CD,DA of the square is intersected at some point E,F,G,H

respectively.
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As four regions are obtained, the only possibility is for the dividing lines to be EG and FH,
and they meet at some point P within the square. The sum of perimeters of all four regions is
thus

|AB|+ |BC|+ |CD|+ |DA|+ 2 · |EG|+ 2 · |FH| = 4 + 2 · (|EG|+ |FH|) ≥ 4 + 2 · 2 = 8,

as opposite sides of the square are distance 1 apart. By pigeonhole principle, some region has
perimeter at least 2.

Comment. A similar proof is to split the cases based on whether or not both line segments
dividing the square have a length of greater than one. If not, then it can be shown that there
is one side that is not intersected.

Solution 2. (solution by Tony Wang)

Let ABCD be the unit square. Since it is divided into four regions, then at least one region,
say R, must have an area of greater than or equal to 1/4. We now split into cases depending
on how many sides R has.

1. R has 3 sides. In this case we wish to show that the triangle with a fixed area has
smallest perimeter when it is equilateral. This is equivalent to showing that a triangle
with a fixed perimeter has largest area when it is equilateral. Now suppose that some
two sides FE and EG of the triangle are of different lengths. The locus of points E for
constant FE + EG is an ellipse centered on F and G passing through E.

Since the area of triangle EFG is 1
2FG × h, where h is the height of the triangle, it is

maximised when E is the apex P of the ellipse. Note that at this point, FP = PG. This
means that a triangle with a fixed perimeter does not have the largest possible area if any
two of its sides have different lengths, and therefore an equilateral triangle maximises area
for a given perimeter.

For any equilateral triangle of side length b, its height is h =
√

b2 − (b/2)2 =
√
3b/2

by Pythagoras’ theorem, and so its area A = bh/2 =
√
3b2/4. Hence if A ≥ 1/4, then

3b ≥ 3/ 4
√
3 > 3/1.5 = 2, as desired.

2. R has 4 sides. In this case we wish to show that the quadrilateral with a fixed area
has smallest perimeter when it is a square. To do this, first note that by a similar ellipse
argument as above, a quadrilateral with fixed perimeter does not have maximal area if any
two adjacent sides have differing lengths. Hence, we need only consider rhombi. Since a
rhombus with side length b and angle θ has area b2 sin(θ), it follows that area is maximised
when θ = 90◦, i.e. in the case of a square. Finally, any square with area greater than or
equal to 1/4 certainly has perimeter greater than or equal to 2.
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3. R has more than 4 sides. Since there are only two dividing lines, at most two sides of
R are contributed by the dividing lines, meaning that three or more sides are contributed
by the edges of the square. Since these sides must be consecutive, one of the sides of R
must be one of the sides of the square, say AB. Then AB contributes a perimeter of 1 to
R, and by triangle inequality, the path from B back to A contributes a length of greater
than 1 to the perimeter. Hence we are done.

Solution variant (by contestants and Tony Wang). We use trigonometry to prove the
that a triangle and quadrilateral with fixed area has minimal perimeter when it is regular.

1. R has 3 sides. Denote the three sides of the triangle by x, y, and z, and let X, Y , and
Z be their opposite angles, respectively. The area of of the triangle is 1

2yz sinX ≥ 1
4 and

so sinX ≥ 1
2bc . Hence by sine rule we obtain

2xyz ≥ x

sinX
=

y

sinY
=

z

sinZ
.

Rearranging, we get that

z ≥ 1

2x sinY
≥ 1

2x
and y ≥ 1

2x sinZ
≥ 1

2x
,

and so x+ y + z ≥ x+ 1
x ≥ 2 by AM-GM.

2. R has 4 sides. Denote the four sides of the quadrilateral by a, b, c, and d, in order, and
let the angle between a and b be X, and the angle between c and d be Y .

Then we have
1

2
ab sinX +

1

2
cd sinY ≥ 1

4
. (1)

By cosine rule, we have a2 + b2 − 2ab sinX = c2 + d2 − 2cd sinY , which implies

1

2
ab sinX =

a2 + b2 − c2 − d2

4
+

1

2
cd sinY,

and so substituting into (1) and multiplying by 4 yields a2 + b2 − c2 − d2 + 4cd sinY =
4 × Area ≥ 1. Returning now to our goal of minimising a + b + c + d, we note that if
a ̸= b, then by replacing both a and b by

√
(a2 + b2)/2, the area of R is preserved but

the perimeter is decreased, since a short calculation will show that 2
√

(a2 + b2)/2 ≥ a+ b
reduces to (a−b)2 ≥ 0. Hence the minimum perimeter is achieved only if a = b. Similarly,
we can deduce that b = c and c = d. So it remains to minimise 4a when 4a2 sinY ≥ 1,
but then we have a2 ≥ 1

4 =⇒ a ≥ 1
2 =⇒ 4a ≥ 2, as required.
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Comment. There are many other ways of proving the isoperimetric inequality for triangles
and quadrilaterals, including by use of calculus.

Solution 3. (solution by contestants)

Let ABCD be the unit square. If both line segments dividing the square have length greater
than or equal to one, then we use the pigeonhole argument in the second half of Solution 1.
Otherwise, one of the lines has length less than one, and so it must intersect two adjacent
sides. WLOG, we can assume it intersects sides AB and AD at E and F respectively. Let
x be the length of AE and y be the length of AF . Since EF has length less than one, we
have

√
x2 + y2 < 1. After squaring, adding −2xy to both sides, and factorising, it becomes

(x− y)2 < 1− 2xy, and since (x− y)2 ≥ 0, we get xy < 1/2. Now we know that AEF has an
area of xy/2 < 1/4, and so the region S = EBCDF has area greater than 3/4.

Now, the second line must divide S into two regions, and by pigeonhole principle at least
one of these regions will have an area greater than 3/8. By the isoperimetric inequality, any
region with area greater than 3/8 will have greater perimeter than the circle of the same area.
But if πr2 > 3/8 then 2πr >

√
3π/2 >

√
4 = 2, and so the region with area greater than 3/8

will have perimeter greater than 2, as required.

Solution 4. (solution by contestants)

Let ABCD be the unit square, ℓ1 and ℓ2 be the two dividing lines, and P their point of
intersection. Draw altitudes from P to AB, BC, CD, and DA and let their feet be E, F , G,
and H respectively. The lines EG and FH divide the square into four rectangles.

Let P(R) denote the perimeter of region R. We now consider two cases:
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1. ℓ1 and ℓ2 combined intersect the interiors of only zero or two rectangles. In
this case there must be a pair of two rectangles touching only at a vertex which are
not intersected by ℓ1 or ℓ2: suppose they are PEBF and PGDH. Then note that the
P(PEBF ) + P(PGDH) = 2(PE + PG+ PF + PH) = 2(1 + 1) = 4, and so at least one
of them must have a perimeter greater than or equal to two: suppose PGDH does. Then
since PGDH is contained inside another region, that region must have perimeter greater
than 2, as required.†

2. ℓ1 and ℓ2 combined intersect the interiors of all four rectangles. In this case,
suppose WLOG that the region PGDH contains the center of the square (not necessarily
in its interior). Then we know that PG,PH ≥ 1/2. WLOG we may assume that ℓ1 is
the line that passes through regions PHAE and PFCG. Denote the two regions that the
line ℓ1 divides the square into by R1 and R2.

Construct a line ℓ′1 parallel to ℓ1 which passes through the center of the square, dividing
the square into two congruent regions R′

1 and R′
2. Note that ℓ′1 has a length x between 1

and
√
2, and so the P(R′

1) + P(R′
2) = 4 + 2x ≥ 6, which implies that P(R′

1),P(R′
2) ≥ 3.

Since ℓ1 either does not intersect ℓ′1 or is the same line as ℓ′1, one of R1 and R2 must
contain one of the regions R′

1 and R′
2. WLOG we may suppose R1 contains R′

1. Then by
a similar argument to above, we have P(R1) ≥ P(R′

1) ≥ 3.

Now, ℓ2 must pass through P and intersect either DG or DH. Call this intersection point
Q. By triangle inequality we have either PQ ≥ PG or PQ ≥ PH depending on whether
Q is on DG or DH, but in either case we can conclude that PQ ≥ 1/2. Hence the sum of
perimeters of the two regions that ℓ2 divide R1 into must be at least 3+2PQ ≥ 4, and so
by pigeonhole principle at least one of the two regions must have perimeter at least 2.

†This may be proven by repeatedly applying triangle inequality, or by perpendicularly “offsetting” the sides
of the rectangle until it reaches the containing region.
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Problem 2. (proposed by Ethan Tan)

Let f : R → R be a differentiable function such that f ′(x) > f(x) > 0 for all real numbers x.
Show that f(8) > 2022f(0).

Notes on Marking. Most contestants used arguments similar to the model solutions pro-
posed. Common mistakes included arguing that any such function must be purely exponential,
or not giving reasonable justification to why such a function takes values greater than the
exponential function ex on the positive real axis. One mark was deducted for neglecting to
convincingly show why e8 > 2022. Giving examples of functions satisfying the inequalities was
not awarded any marks.

Solution 1. (solution by Ethan Tan)

We have
d

dx
log f =

f ′

f
> 1 =⇒ log f(x) > log(f(0)) + x

for all x > 0. So f(x) > f(0)ex. Since e2 > 2.72 > 7, we have e8 > 74 = 2401 > 2022, as
required.

Solution 2. (solution by Ethan Tan)

We have, for all x > 0,

d

dx

(
e−xf

)
= e−x(f ′ − f) > 0 =⇒ e−xf(x) > f(0).

So f(x) > f(0)ex. We can finish as in solution 1.

Solution 3. (solution by Ethan Tan)

The condition f ′(x) > 0 implies that f is strictly increasing. Hence, for all x > y we have

f ′(x) > f(x) > f(y) > 0, and so there exists z ∈ (y, x) such that f ′(z) = f(x)−f(y)
x−y > f(z) > f(y)

by the mean value theorem. Therefore, f(x) > (1+x−y)f(y) for all x > 0. Letting y = x−1/n
with n ∈ N we get

f (x) >

(
1 +

1

n

)
f(y) =⇒ f(8) >

(
1 +

1

n

)
f

(
8− 1

n

)
> · · · >

(
1 +

1

n

)8n

f(0).

Taking limits we find that f(8) > f(0)e8 and we can finish as in solution 1.

Solution 4. (solution by Ethan Tan and Tony Wang)

Define g(x) = f(x)
f(0) − ex, and note that g′(x) > g(x) and g(0) = 0. Since g′(0) > 0, there exists

an interval around 0 where g is positive. Let S be the set {x > 0 : g(x) ≤ 0}. we will show that
S is empty.

Suppose for the sake of contradiction that S ̸= ∅, so there exists a positive a = inf S. Then
g(0) = g(a) = 0 and by the mean value theorem there exists 0 < b < a satisfying g′(b) = 0.
However, using the properties of g, we then have 0 < g(b) < g′(b) = 0, so b ∈ S, contradicting
the minimality of a.

Hence S = ∅, i.e. g(x) > 0 for all x > 0. But this rearranges into f(x) > f(0)ex for all
x > 0, and we can finish as in solution 1.
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Comment. Using auxiliary function can be avoided by directly comparing f(x)/f(0) to ex

for x > 0 and using a series expansion around a similarly constructed infimum. The argument
using the infimum could be replaced by one showing that the set of positive numbers where g
is positive is unbounded.
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Problem 3. (proposed by Dylan Toh)

Bugs Bunny plays a game in the Euclidean plane. At the n-th minute (n ≥ 1), Bugs Bunny hops
a distance of Fn in the North, South, East, or West direction, where Fn is the n-th Fibonacci
number (defined by F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 3). If the first two hops were
perpendicular, prove that Bugs Bunny can never return to where he started.

Notes on Marking. Almost all contestants who obtained 9-10 marks followed Solution 1
below with some combination of the alternative branching solutions listed. Some contestants
using this method forgot to mention that it is not possible to return in N = 1, 2, 3 steps but no
marks were deducted for this since this is painfully obvious.

By far the most common incorrect approach was to try show that after taking the first 4
steps (1, 0) + (0, 1) + (0, 2) − (0, 3) = (1, 0) it is impossible to return to the origin. It is not
immediately clear that these must be the 3rd and 4th steps and no mark were awarded for
making this claim.

Very few contestants solved the problem via Solution 2, and all but one solved it using
induction, which requires the lemma in Solution 1 (or similar). As a side note since Zeckendorf’s
theorem implicitly uses the lemma in Solution 1, all solutions by contestants/staff require some
form of this identity.

Solution 1. (solution by Dylan Toh and Tiger Ang)

First we claim that the following lemma holds.

Lemma. For all n ≥ 0, F1 + F2 + · · ·+ Fn = Fn+2 − 1.

This may be proven by induction on n, or by noting that the sum telescopes as Fk =
Fk+2 − Fk+1. It should be noted that other similar identities/inequalities can also be used.

Let xn, yn denote the x and y coordinate of Bugs Bunny after time n. Now we suppose for
a contradiction that Bugs Bunny returns to the origin after N ≥ 4 steps. WLOG let the final
N -th step be in the South direction, then the final position is (xN−1, yN−1) = (0, FN ). If the
(N − 1)-th jump was not North, then

yN−2 ≥ FN = F1 + F2 + · · ·+ FN−2 + 1

Which is a contradiction since this point cannot be reached by step (N −2) even if Bugs Bunny
always traveled north. Hence the second last jump can only be in the North direction and
(xN−2, yN−2) = (0, FN−2). If the (N − 2)-th jump was not North then, (xN−3, yN−3) is one of
3 cases {(0, 2FN−2), (FN−2, FN−2), (−FN−2, FN−2)}. In all cases

|xN−3|+ |yN−3| = 2FN−2 > FN−1 = F1 + F2 + · · ·+ FN−3 + 1

Which is a contradiction since this point cannot be reached by step (N −3) even if Bugs Bunny
always traveled north or north/east or north/west respectively. Hence the third last jump can
only be in the North direction and (xN−3, yN−3) = (0, 0). Hence there is no solution in N -
steps, only if there is no solution in (N − 3)-steps. So we can apply induction with base cases
N = 1, 2, 3 all of which are trivial to check.
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Alternative branching solution: We can also show the third last jump can only be in
the North direction by showing the other three directions give a contradiction similar to the
previous case. If the (N − 2)-th jump was South then

yN−3 = 2FN−2 ≥ FN−1 = F1 + F2 + · · ·+ FN−3 + 1

Which is a contradiction since this point cannot be reached by step (N −3) even if Bugs Bunny
always traveled North.

If the (N − 2)-th jump was East/West then by a similar reasoning to the above it must
both be true that the (N − 3)-th jump was West/East and the (N − 3)-th jump was North a
contradiction.

Alternative branching solution: If we had previously assumed that N ≥ 4 is the minimal
such value such that Bugs Bunny returns to the origin after N -steps. Then the existence of a
solution of (N −3)-steps gives an immediate contradiction. Note that the base cases N = 1, 2, 3
still need to be checked here.

Solution 2. (solution by contestants)

First we claim the following lemma holds.

Lemma. Suppose that A,B ⊂ {3, 4, . . . , N} such that A ∩B = ∅ and

1 +
∑
a∈A

Fa =
∑
b∈B

Fb.

Then 3 ∈ A.

If this lemma holds we are done since there exists a solution in N -steps iff we can find a
disjoint partition X+, X−, Y+, Y− ⊂ {3, 4, . . . , N} such that (WLOG (x2, y2) = (1, 1))

1 +
∑
i∈X+

Fi =
∑
j∈X−

Fj and 1 +
∑
i∈Y+

Fi =
∑
j∈Y−

Fj

By the lemma this is a contradiction since 3 ∈ X+ ∩ Y+ = ∅.
It remains to prove the lemma which can be done by induction on m = max(A ∪ B). By a

similar logic to Solution 1, m ∈ A ⇒ m− 1,m− 2 ∈ B and m ∈ B ⇒ m− 1,m− 2 ∈ A. Hence
there is a solution where m = max(A∪B) only if there is a solution where m−3 = max(A∪B).
So we can apply induction with base cases m = 3, 4, 5 which are trivial to check.

Alternative branching solution (by Dylan Toh): We can prove the lemma by using
Zeckendorf’s theorem. Suppose in A we take the greatest n such that n, n− 1 ∈ A and replace
A with (A\{n, n− 1})∪ {n+1}, then the equality of the sums are preserved. Repeat this with
both sets A and B until no more replacements can be made and call the new sets Ã and B̃.
This process must terminate since the cardinality of the set decreases with each replacement.
In particular we have

S = 1 +
∑
a∈Ã

Fa = F2 +
∑
a∈Ã

Fa =
∑
b∈B̃

Fb

We observe that there are no consecutive integers in Ã and B̃. If we suppose now that 3 /∈ Ã
then we have two different Zeckendorf representations of S, a contradiction. Hence 3 ∈ Ã which
implies 3 ∈ A.
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Problem 4. (proposed by Ethan Tan)

Let G be a simple graph with n vertices and m edges such that no two cycles share an edge.
Prove that 2m < 3n.

Note: A simple graph is a graph with at most one edge between any two vertices and no
edges from any vertex to itself. A cycle is a sequence of distinct vertices v1, . . . , vn such that
there is an edge between any two consecutive vertices, and between vn and v1.

Notes on Marking. Marks were most often lost for not fully justifying steps. For example,
for Solution 1, candidates should give a brief explanation for why it is valid to remove edges
from each cycle, and some justification for properties of trees i.e. n > m (it is acceptable to
say this is well-known). For Solution 4, cycle contraction needs to be justified carefully, it is
least prone to error if framed in terms of finding a minimal counterexample. Many candidates
tried to contract all cycles at once, and did not justify why that worked; from that point on
solutions were usually awarded low or no marks. Some candidates attempted direct induction
on n – this is difficult to do rigorously and attempts were often awarded 0 marks. 1 mark was
deducted for not addressing the fact that multiple cycles may meet at a vertex for Solution 3,
and 2 marks for not justifying the graph is planar for Solution 2. Trying to optimise the ratio
of m to n “intuitively” was awarded at most 1 mark.

Solution 1. (solution by contestants)

Every cycle contains ≥ 3 edges, but every edge is in ≤ 1 cycle. Denote the number of cycles
by C, then we have C ≤ m/3. Delete an edge from each cycle to obtain the graph G′. G′ has
no cycles, so it has at most n − 1 edges. (This is a well-known fact.) Then m = |E(G)| =
C + |E(G′)| ≤ m/3 + n− 1 < m/3 + n, and hence 2m/3 < n as required.

Solution 2. (solution by contestants)

G must be planar. This can be most quickly shown using Kuratowski’s Theorem. Suppose G
is not planar, then it contains a subgraph K3,3 or K5, which contradicts the assumption that
cycles in G do not share an edge.

Therefore G is planar, so every cycle contributes 1 to the number of faces. Since the number
of cycles C satisfies C ≤ E/3, and F = C+1, applying Euler’s formula F−E+V = 2 completes
the proof.

Solution 3. (solution by contestants)

Define a new graph H based on cycles, and the cycles that share a vertex. In other words, let
the cycles be {c1, c2, ..., ck}. Then let the c’s be vertices of the graph H, with an edge connecting
ci and cj if and only if the original cycles share a vertex.

It should be observed that several cycles may meet at a vertex, which would create a complete
subgraph and cause the proof to fail. Candidates should construct some method to avoid this
problem, for example, identifying the edges of such a subgraph differently from other edges.

It can then be deduced that the graph H is a forest, because if H contains cycles, one can
easily find cycles that share an edge. Specifically, if ci1 , ci2 ...cil is a cycle, consider traversing
these graphs along the same shared vertices, but choosing different sides of a cycle. This leads
to a contradiction.
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There are then several ways to complete the proof. For example, H must have a leaf node,
implying the existence of a cycle which is connected to at most one other cycle, and one can
induct on the number of cycles. Alternatively, one could bound the number of edges that must
be removed for the graph to become acyclic.

Solution 4. (solution by Ethan Tan)

Suppose not; choose a counterexample G with minimal n. Choose a cycle C in G and contract
it to a single vertex to obtain a new G′. Note, this is possible because no two vertices on the
cycle can be joined by a path not belonging to the cycle.

No two cycles of G′ share an edge (or we could un-contract G′ to G and these cycles would
share an edge in G), so 2|E(G′)| < 3|V (G′)| by minimality of G. But m = |E(G′)| + c and
n = |V (G′)|+ c− 1 where c is the number of vertices in C, and so 2(m− c) < 3(n− c+ 1), i.e.
2m < 3n− c+ 3 ≤ 3n since c ≥ 3, a contradiction.

Solution 5. (solution by contestants)

If G contains an edge, e, which is not part of any cycle, then define H to be the ’shortened’
graph of G where e is removed, and any edge that connects to the vertices to either side of e, say
u and v, instead connect to u. This shortened graph also satisfies the condition no two cycles
share an edge, because e was not part of a cycle by assumption, and this ’shortening’ procedure
cannot create new cycles because it would create a contradiction. It can then be shown that if
H satisfies 2m < 3n, then G also satisfies this condition, since this procedure changes both m
and n by one.

Thus, it remains to be shown that once G has been contracted until all edges are in cycles,
it satisfies 2m < 3n. This is straightforward and can be done by induction on the number of
cycles.
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Problem 5. (proposed by Ethan Tan)

Let [0, 1] be the set {x ∈ R : 0 ≤ x ≤ 1}. Does there exist a continuous function g : [0, 1] → [0, 1]
such that no line intersects the graph of g infinitely many times, but for any positive integer n
there is a line intersecting g more than n times?

Notes on Marking. No marks were awarded for stating the correct answer. 1 partial mark
was awarded for each of the ideas of using oscillatory functions to obtain arbitrarily many
intersections, and using an envelope to preserve finiteness of intersections. A valid construction
without proof was awarded 4 marks. Justifying the properties of arbitrarily many intersections
and finiteness of intersections was awarded an additional 3 marks each. 1 mark was deducted for
using linear segments in an otherwise valid construction. 1 mark was deducted for incomplete
justification of either property, or rotating graph segments without justifying that it is well-
defined.

Solution 1. (solution by Dylan Toh)

We show that the answer is yes. The construction is a function with microscopic oscillatory
behaviour within a suitable envelope.

For n ≥ 1, let Pn(x) be the 2n-th Chebyshev polynomial, i.e. the polynomial such that
cos(2nθ) = Pn(cos θ) for all θ. We shall use the following properties of Pn(x):

• Pn has degree 2n.

• |x| ≤ 1 =⇒ |Pn(x)| ≤ 1.

• The extrema of Pn are attained at −1 = x
(n)
0 < x

(n)
1 < · · · < x

(n)
2n = 1, with Pk(x

(n)
i ) =

(−1)k for k = 0, 1, . . . , 2n. (Explicitly, xk = cos(kπ/2n).)

Consider the function g : [0, 1] → R given by

g(x) =

{
x2+x3

2 + x2−x3

2 Pn (2n(n+ 1)x− 2n− 1) , x > 0, n = ⌊x−1⌋
0, x = 0.

First, we show g is continuous. Note g is piecewise polynomial: on each interval x ∈ In =
[(n+ 1)−1, n−1] for n ≥ 1,

g(x) =
x2 + x3

2
+

x2 − x3

2
Pn (2n(n+ 1)x− 2n− 1)

with −1 ≤ 2n(n+ 1)x− 2n− 1 ≤ 1. Thus x2 ≤ g(x) ≤ x3 for all x ∈ In.
Since Pn(±1) = 1, thus g is continuous between pieces. Since x2 ≤ g(x) ≤ x3 for all x ∈ [0, 1],

thus by the squeeze theorem, g(x) → 0 = g(0) as x → 0+, thus g is continuous at 0. Thus g is
continuous on [0, 1], and has image in [0, 1] as well.

Next, we claim that for any positive integer n, there is a line intersecting the graph of g at
least n times. Consider (n+1)−1 = a0 < a1 < · · · < a2n = n−1, where for each k = 0, 1, . . . , 2n,

ak =
2n+ 1 + x

(n)
k

2n(n+ 1)
.
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For each k = 0, 1, . . . , 2n, the point

Ak = (ak, g(ak)) =

(
ak,

a2k + a3k
2

+
a2k − a3k

2
(−1)k

)
=

{
(ak, a

2
k), k even

(ak, a
3
k), k odd

lies on the graph of g. Note for sufficiently large n, a3k ≤ n−3 < 2n−3 < (n + 1)−2 < a2l for
all odd indices k and even indices l. Considering the line y = 2n−3, the even-indexed points
Al lie above the line, while the odd-indexed points Ak lie below the line. By the intermediate
value theorem, the graph of g intersects the line y = 2n−3 within ak−1 < x < ak for each
k = 1, . . . , 2n. This guarantees at least 2n intersections.

Lastly, we claim that any line intersects the graph of g at only finitely many points. Suppose
otherwise, that some line ℓ intersects the graph of g at infinitely many points. For each n ≥ 1,
g is a non-linear polynomial on each In, thus has finitely many intersections with ℓ on In.

Since [0, 1] = {0} ∪ I1 ∪ I2 ∪ . . . , thus there exists an increasing sequence of indices n1 <
n2 < n3 < . . . such that ℓ intersects g at some point (αk, βk), where αk ∈ Ink

for each k ≥ 1.
Note 0 < αk ≤ n−1

k and 0 < βk ≤ α2
k for all k ≥ 1. Thus in the limit k → ∞, (αk, βk) → (0, 0)

lies on ℓ, and

0 ≤ βk
αk

≤ αk → 0 as k → ∞,

thus ℓ has gradient 0. But g(x) > 0 for all x > 0, so ℓ only intersects the graph of g at the
origin, a contradiction. The result follows.

Comment. The above construction involves envelopes x2 ≤ g(x) ≤ x3, with arbitrarily large
number of intersections provided by the Chebyshev polynomials. Oscillatory behaviour may
instead be obtained with trigonometric functions, and a wide class of envelopes may be employed
to preserve the finiteness of intersections. There are also constructions for which g is analytic

on 0 < x < 1, such as g(x) =
(
2+sin(1/x)

3

)
x2.
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Problem 6. (proposed by Ethan Tan)

Consider the sequence defined by a1 = 2022 and an+1 = an + e−an for n ≥ 1. Prove that there
exists a positive real number r for which the sequence

{ra1}, {ra10}, {ra100}, . . .

converges.
Note: {x} = x− ⌊x⌋ denotes the part of x after the decimal point.

Notes on Marking. Trying to show that an converges was not awarded any marks (indeed,
an does not converge).

Solution 1. (solution by Ethan Tan)

Note that for 0 < x < 1, since ex is convex, we have

1 + x < ex < (e− 1)x+ 1 < 2x+ 1 (†)

since 1 + x is the tangent at 0 and (e − 1)x + 1 is the line from (0, e0) to (1, e1). Integrating
both sides of ex < 2x + 1 (noting that they are equal at x = 0) we have ex < 1 + x + x2 on
0 < x < 1.

Let bn = ean , so that ln(bn+1) = ln(bn)+ 1/bn. Now an > e for all n, so bn > 1. We then get
that bn+1 = bne

1/bn , so by (†), bn(1 + 1/bn) < bne
1/bn < bn(1 + 1/bn + 1/b2n). Hence

bn + 1 < bn+1 < bn + 1 + 1/bn.

Applying the LHS repeatedly gives bn > n (since b1 > 1). Using the RHS, we have bn+1 <
bn + 1 + 1/bn < bn + 1 + 1/n, so applying this repeatedly, we see that

bn+1 < b1 + (n− 1) + (1 + 1/2 + 1/3 + . . .+ 1/n)

< b1 + (n+ 1/2) +

∫ n+1

2

1

x
dx

= b1 + (n+ 1/2) + ln(n+ 1)− ln(2) < n+ ln(n+ 1) + 10

since ln(2022) < 10.

So n < bn < n + ln(n+ 1), i.e. ln(n) < an < ln(n+ ln(n+ 1) + 10). Choose r = log10(e).
Then

log10(10
k) < ra10k < log10(10

k + ln (10k + 1) + 10).

Now log10(10
k) = k, whereas

log10(10
k + ln (10k + 1) + 10) = k + log10(1 + ln (10k + 1)/k + 10/k) = k + o(1).

So we have the desired result.
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