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Problem 1. (proposed by Ethan Tan)

The city of Atlantis is built on an island represented by [−1, 1], with skyline initially given by
f(x) = 1 − |x|. The sea level is currently y = 0, but due to global warming, it is rising at a
rate of 0.01 a year. For any position −1 < x < 1, while the building at x is not completely
submerged, then it is instantaneously being built upward at a rate of r per year, where r is the
distance (along the x-axis) from this building to the nearest completely submerged building.

How long will it be until Atlantis becomes completely submerged?

Notes on Marking. By far the most common solution type was deriving constraints based
on the intersection of the island with water, which by definition has height 0.01t at the point of
submersion. The next most common solution type involved the fact the gradient changed with
rate ±1 (depending on parameterisation). These two solution types cover almost all full-mark
solutions. The nature of the problem meant candidates usually received 0–1 marks, or 9–10
marks. It was extremely rare for candidates to obtain the correct equations, but fail to solve
them. Sometimes, candidates made intuitive but unjustified assumptions about the problem,
for example, forgetting to state they were considering half the island, for which 1 or 2 marks may
be deducted. Although a rigorous proof that the island profile is linear was not expected, and
was not assumed in the most common solution type, if candidates assume this in the solution,
they are expected to justify it. Several candidates interpreted time to be discrete. It appears
some candidates first discretised time, then took the continuum limit, this was rarely successful.

Solution 1. (solution by Tony Wang and Yuqing Wu)

Parameterise time t in years, and the x-coordinate of the waterfront in the first quadrant by
a(t). Denote the height of the island at time t as ft(x). Note that the rate of change of a
depends only on the gradient of the island at the waterfront. By inspection (or the inverse
function rule), if gt =

d
dxft is the gradient, then we can see that

ȧ(t) =
0.01

gt(a(t))
,

where ȧ(t) represents the time-derivative of a.
For all non-negative x-coordinates x1 < x2, the difference in the distance from x1 to the

waterfront and x2 to the waterfront is the constant x2 − x1 as long as neither been submerged.
Hence, the difference in their rates of being built upwards will also be the constant x2−x1, and
so ft(x1) − ft(x2) = (x2 − x1)(t + 1). By differentiation from first principles, this means that
the gradient at ft(x) for all positive non-submerged x will be exactly −t − 1. So we have the
equation

ȧ(t) = − 0.01

t+ 1
,

which yields a(t) = 0 at t = e100 − 1.

Solution 2. (solution by contestants)

Parameterise the x-coordinate of the waterfront in the first quadrant by a(t), where t is the
time in years. The rate of construction at any point x is, by definition,

∂f(x, t)

∂t
= a(t)− x.
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For the sake of simplicity, we have assumed that the island is deconstructed at rate r underwater,
where r is the distance to the waterfront.

The height at the point of submersion is the same as the sea level, and so

f(a, t) = 0.01t.

Then, since f(a, 0) = 1− a, integrating over t gives,

0.01t = 1− a(t) +

∫ t

0
a(t′) dt′ −

∫ t

0
a(t) dt′.

Observing that the final term is simply ta(t), taking the derivative of both sides and rearranging
gives

(1 + t)ȧ = −0.01.

Since we now know the speed of the waterfront at all times, we can find out how long it
takes for it to move 1 unit to the left by integrating under the speed–time curve, i.e. by solving

−1 =

∫ t

0
− 0.01

s+ 1
ds,

which results in 100 = ln(t+ 1) =⇒ t = e100 − 1.
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Problem 2. (proposed by Simeon Kiflie)

Show that if the distance between opposite edges of a tetrahedron is at least 1, then its volume
is at least 1/3.

Notes on Marking. Most participants who drew the diagram in Solution 1 managed to
complete the proof but some marks were awarded for anyone who drew the diagram at all.
Several participants were able to obtain the expression of the volume of the tetrahedron as
in solution 2 which were awarded partial marks. Only one participant was able to bound the
cross product term and conclude via this method. No marks were awarded to anyone who only
computed the volume of a regular tetrahedron satisfying the assumption.

Solution 1. (solution by Dylan Toh)

Let A,B,C,D be the vertices of the tetrahedron. WLOG we may assume the centre of mass
of the tetrahedron to be the origin O. Let E,F,G,H be the reflections of A,B,C,D about O
respectively.

First, note that AGBHFDEC is a parallelepiped. To see this, let a⃗, b⃗, c⃗, d⃗ be the vectors to
the vertices of the tetrahedron, with a⃗+ b⃗+ c⃗+ d⃗ = 0. Then

−→
AF =

−−→
BE = −b⃗− a⃗ = c⃗+ d⃗ =

−−→
HC =

−−→
GD

and similarly for the other two sets of 4 edges of the parallelepiped.
Next, observe that the volume of the tetrahedron is 1/3 the volume of the parallelepiped.

This is because a (volume-preserving) shear transformation followed by scaling sends the par-
allelepiped to the unit cube, of which the volume of the tetrahedron may then be computed to
be 1/3 (e.g. by integrating to find the volume of an adjacent tetrahedron GABD to be 1/6).

Finally, the distance between the lines through opposite edges of the tetrahedron is the
distance between opposite faces of the parallelepiped. For instance, the planes AFCH and

GDEB are spanned by
−→
AC =

−−→
GE and

−−→
FH =

−−→
DB.

The volume of the parallelepiped is

V = Area(AFCH) · distance(AFCH,GDEB)
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of which the latter distance between planes AFCH and GDEB is at least 1; and

Area(AFCH) = |AF | · (distance between lines CH and AF )

≥ distance(AHBG,FCED) · distance(AFDG,HCEB)

is at least 1 as well. Thus the volume of the parallelepiped is at least 1, and the volume of the
tetrahedron ABCD is at least 1/3.

Solution 2. (solution by Matthew Johnson)

Let A,B,C,D be the vertices of the tetrahedron. WLOG we may rotate the tetrahedron so

that
−−→
AB and

−−→
CD have no z-component. Additionally by translating we may assume WLOG

that AB lies in the z = 0 plane and CD lies in the z = h plane where h ≥ 1.
Now consider the area of each z-slice of the tetrahedron. Let E,F,G,H respectively be the

intersection of AC,AD,BD,BC with the z = c ∈ [0, h] plane. It can be shown that EFGH
is a parallelogram with FG = EH =

(
1− c

h

)
AB and EF = HG =

(
c
h

)
CD, hence the area of

the parallelogram at z = c is
∣∣∣−−→FG×

−−→
FE
∣∣∣ = (1− c

h

) (
c
h

) ∣∣∣−−→AB ×
−−→
CD

∣∣∣. Integrating the area from

c = 0 to c = h, we find that the volume of the tetrahedron is h
6

∣∣∣−−→AB ×
−−→
CD

∣∣∣ ≥ 1
6

∣∣∣−−→AB ×
−−→
CD

∣∣∣.

To conclude it is enough to show that
∣∣∣−−→AB ×

−−→
CD

∣∣∣ ≥ 2. By intermediate value theorem, we

can see that there exists c′ ∈ [0, h] such that EFGH is a rhombus. Furthermore by the assump-
tion we know |EG|, |FH| ≥ 1 and we use the fact that

(
1− c

h

) (
c
h

)
≤ 1

4 for all c ∈ [0, h]. Putting

it all together, we get 1
2 ≤ 1

2 |EG||FH| = Area(Rhombus at c′) =
(
1− c′

h

)(
c′

h

) ∣∣∣−−→AB ×
−−→
CD

∣∣∣ ≤
1
4

∣∣∣−−→AB ×
−−→
CD

∣∣∣ and we are done.
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Problem 3. (proposed by Ethan Tan)

The numbers 1, 2, . . . , n are written on a blackboard and then erased via the following process:

• Before any numbers are erased, a pair of numbers is chosen uniformly at random and
circled.

• Each minute for the next n−1 minutes, a pair of numbers still on the blackboard is chosen
uniformly at random and the smaller one is erased.

• In minute n, the last number is erased.

What is the probability that the smaller circled number is erased before the larger?

Notes on Marking. While only about half the contestants attempted the question, those
who did fared well on average. Errors in otherwise complete solutions were rare. No marks
were awarded for calculating the probability for specific n only, or for giving a (correct) Ansatz
without justification.

Solution 1. (solution by Ethan Tan)

Suppose that one of the circled numbers is 1. Let Xn be the minute in which 1 is erased
(we count the first minute as minute 0); since one number is erased each minute and numbers
2, . . . , n− 1 are equally likely to be the other circled number x, we see that the probability 1 is
erased before x is 1− EXn/(n− 1). Now P (Xn = 0) = 2/n, and otherwise we reach the same
situation with n − 1 numbers in total (note that in this case it doesn’t matter which number
was erased because all numbers beat 1). So we get

EXn = (1− 2/n)(1 + EXn−1),

with EX1 = EX2 = 0. This solves to EXn = (n− 2)/3. So the probability 1 is erased before x
is 1− (n− 2)/3(n− 1) = (2n− 1)(3n− 3).

In the general case, let pn be the probability that the smaller number is erased first. 1 is
circled with probability 2/n. If 1 is not circled at the start, then we can effectively ignore it
because any time it is used in a pair, it is erased. This reduces to the n− 1 case. So

pn =
2

n
· 2n− 1

3n− 3
+

n− 2

n
pn−1,

and p2 = 1, which solves to 2(n+ 1)/3n.

Solution 2. (solution by Gergely Rozgonyi)

We first check some simple cases. Let pn be the probability for the case where we have n
numbers on the blackboard. For n = 2, we have p2 = 1. For n = 3, we have the following cases:
if one of the circled numbers is 3, then we will certainly erase the smaller number before 3. If
the circled numbers are 1 and 2, then the only way we can erase 2 before 1, is the case where
in minute two the two chosen numbers are 2 and 3. Overall we have

p3 =

(
2
1

)(
3
2

) + 1(
3
2

) 1(
3
2

) =
7

9
.
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Now, suppose we have

pk =
2k + 2

3k
∀ 2 ≤ k ≤ n− 1

and proceed by induction.
Let Xm, XM denote the smaller and bigger number circled respectively, and Tm, TM denote

the minute they are erased. Then the following events form a partition:

{Tm = 2}; {TM = 2}; {Tm ̸= 2, TM ̸= 2};

P (Tm = 2) + P (TM = 2) + P (Tm ̸= 2, TM ̸= 2) = 1.

By the law of total probability, we can write pn as

pn =P (Tm < TM )

=P (Tm < TM |Tm = 2)P (Tm = 2) + P (Tm < TM |TM = 2)P (TM = 2)

+ P (Tm < TM |Tm ̸= 2, TM ̸= 2)P (Tm ̸= 2, TM ̸= 2)

=1 · P (Tm = 2) + 0 · P (TM = 2) + pn−1 · P (Tm ̸= 2, TM ̸= 2).

The first and second terms are clear, and for the third one, we note that choosing two numbers
from 1, . . . , n−1 (as we fixed that we erase a number that was not circled) uniformly at random
is independent of the erasure order, and hence after erasing the first number, the game plays as
one with n− 1 numbers written on the blackboard. We now need to calculate the probabilities
for the partition. Note that if Xm = k, we erase Xm at t = 2 if we pick Xm and a number that
is greater than Xm. This happens with probability

n− k(
n
2

) .

The same result holds for XM = k. Using the law of total probability, we have

P (Tm = 2) =
∑

1≤k<K≤n

P (Tm = 2|Xm = k,XM = K)P (Xm = k,XM = K)

=
∑

1≤k<K≤n

n− k(
n
2

) 1(
n
2

) =
1(
n
2

)2 n−1∑
k=1

n∑
K=k+1

(n− k)

=
1(
n
2

)2 n−1∑
k=1

(n− k)2 =
1(
n
2

)2 n−1∑
k=1

k2 =
1(
n
2

)2 (n− 1)n(2n− 1)

6
=

2n− 1

3
(
n
2

) ;

P (TM = 2) =
∑

1≤k<K≤n

P (TM = 2|Xm = k,XM = K)P (Xm = k,XM = K)

=
∑

1≤k<K≤n

n−K(
n
2

) 1(
n
2

) =
1(
n
2

)2 n∑
K=2

K−1∑
k=1

(n−K)

=
1(
n
2

)2 n∑
K=2

(K − 1)(n−K) =
1(
n
2

)2 n∑
K=2

[
−(K − 1)2 + (K − 1)(n− 1)

]
=

1(
n
2

)2 n(n− 1)(n− 2)

6
=

n− 2

3
(
n
2

) ;
P (Tm ̸= 2, TM ̸= 2) = 1− P (Tm = 2)− P (TM = 2) = · · · = n− 2

n
.

Using these results and the induction hypothesis, we have

pn =
2(2n− 1)

3n(n− 1)
+

n− 2

n

2n

3n− 3
=

2n+ 2

3n
,

and the result follows.
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Alternative branching solution: Instead of calculating the probability for small n and then
conjecturing the correct form of the solution to use for induction, one could note just that the
case n = 2 is trivial, and calculate pn as a finite sum plus a telescoping product iterating from
p2.

Solution 3. (solution by Dylan Toh)

Let (X1, . . . , Xn) be the numbers listed in erasure order. As the circling of the numbers is
independent of the erasure process, the pair of circled numbers may be taken to be chosen
uniformly from X1, . . . , Xn. Consequently, the probability that the smaller circled number was
erased before the larger is

pn =
∑

1≤i<j≤n

P (Xi, Xj are circled) · P (Xi < Xj)

=

(
n

2

)−1

E

 ∑
1≤i<j≤n

1Xi<Xj

 =

(
n

2

)−1

E [A] ,

where A = #{(i, j) : 1 ≤ i < j ≤ n,Xi < Xj} is the number of ascending pairs of X. Note

A =
n−1∑
i=1

#{j : i < j ≤ n,Xi < Xj} =
n−1∑
i=1

(mi − 1),

where Xi is the Mi-th largest number among the (n− i+ 1) numbers on the board at the i-th
minute. Consequently,

pn =

(
n

2

)−1 n−1∑
i=1

E [Mi − 1] .

We first compute the distribution of X1. Note that for m = 1, . . . , n,

P (X1 ≥ n+ 1−m) = P (circled numbers are both ≥ n+ 1−m) =

(
n

2

)−1(m
2

)
,

so by taking adjacent differences,

P (X1 = n+ 1−m) =

(
n

2

)−1(m
2

)
−
(
n

2

)−1(m− 1

2

)
=

(
n

2

)−1

(m− 1)

for m = 1, 2, . . . , n. More generally, for each 1 ≤ i ≤ n, Mi is distributed among (1, 2, . . . , n −
i+ 1) with probabilities

(
n−i+1

2

)−1
(0, 1, . . . , n− i). Its expectation may thus be computed:

E[Mi − 1] =

n−i+1∑
m=1

(
n− i+ 1

2

)−1

(m− 1) · (m− 1)

=
2

(n− i+ 1)(n− i)
· (n− i)(n− i+ 1)(2(n− i) + 1)

6
=

2(n− i) + 1

3
.

Finally, the desired probability is

pn =
2

n(n− 1)

n−1∑
i=1

2(n− i) + 1

3
=

2

3n(n− 1)
· (n(n− 1) + (n− 1)) =

2(n+ 1)

3n
.
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Problem 4. (proposed by Dylan Toh)

Do there exist infinitely many positive integers m such that the sum of the positive divisors of
m (including m itself) is a perfect square?

Notes on Marking. One mark was awarded for stating that σ(ab) = σ(a)σ(b) or equivalent,
such as the formula based on prime factorisations (here, σ is the sum-of-divisors function).
Unfortunately, no marks were awarded for solutions assuming an infinite number of Mersenne
primes, primes generated by a quadratic equation, or prime pairs related by a linear relation.

Solution 1. (solution by Tejas Mittal and Ahmed Ittihad Hasib [Oxford])

We show that the answer is yes. Suppose for the sake of contradiction that there are finitely
many such positive integers m, with the largest being M . (Note that this set is non-empty since
22 works.) We will show how to construct a larger number whose sum of divisors is a square.

Let σ be the sum-of-divisors function, and note that σ(ab) = σ(a)σ(b) whenever a and b are
coprime. Let pi denote the i-th prime. For each i ∈ {0, 1, 2, . . .}, let ai be the smallest positive
integer such that paii > M . Let k be such that pk is the largest prime less than or equal to M ,
and let n be such that pn > max{σ(pa11 ), σ(pa22 ), . . . , σ(pakk )}.

Now since σ(paii ) ≤ pn + 1 for all i ∈ {1, 2, . . . , n}, σ(paii ) is too small to have any prime

divisors greater than pn−1, so we can write each σ(paii ) as p
bi,1
1 p

bi,2
2 · · · pbi,n−1

n−1 . Hence, for any
I ⊆ {1, 2, . . . , n}, we have that

σ

(∏
i∈I

paii

)
=
∏
i∈I

σ(paii ) = pc11 · · · pcn−1

n−1 , where cj =
∑
i∈I

bi,j ,

so it suffices to show that there exists a non-empty I ⊆ {1, 2, . . . , n} such that all cj are even.
Let Sn denote the subsets of {1, 2, . . . , n} , and consider the function

f : Sn → {0, 1}n−1

I 7→ (c1 mod 2, . . . , cn−1 mod 2).

We wish to find an I ∈ Sn such that f(I) = 0. Since the domain has cardinality 2n while
the codomain has cardinality 2n−1, there exist distinct J,K ∈ Sn such that f(J) = f(K) by
pigeonhole principle. Let J ′ = J\(J ∩ K) and K ′ = K\(J ∩ K), and note that we still have
f(J ′) = f(K ′), but now J ′ and K ′ are distinct and disjoint. Hence, f(J ′ ∪ K ′) = 0, and so
finally letting I = J ′ ∪K ′ we have

σ

(∏
i∈I

paii

)
= σ

∏
j∈J ′

p
aj
j

σ

(∏
k∈K′

pakk

)
= pc11 · · · pcn−1

n−1 , where all ci are even.

Since each paii > M , it follows that
∏

i∈J ′∪K′

paii is also greater than M , and so we are done.

Solution 2. (solution by Dylan Toh and Tony Wang)

We show that the answer is yes. Let σ(n) be the sum of divisors of n, and note that if p1, . . . , pk
are k distinct primes, then σ(p1 . . . pk) = (p1 + 1) . . . (pk + 1).
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Let pi denote the i-th prime, and let PN be the set of all primes less than N . For an odd
prime p, p+ 1 is even, and so p ∈ PN implies that all prime factors of p are in P(N+1)/2.

For a fixed large N , let n = |PN | and m =
∣∣P(N+1)/2

∣∣. Consider the linear map over the field
with two elements Φ : Fn

2 → Fm
2 defined by the matrix M over F2 where

Mi,j =

{
0 if the exponent of pj in the prime factorisation of pi + 1 is even, and

1 if the exponent of pj in the prime factorisation of pi + 1 is odd.

Identifying F2 with {0, 1}, note that for all α ∈ {0, 1}n,

σ

(
n∏

i=1

qαi
i

)
= A2

m∏
j=1

q
(Φ(α))j
j , for some A ∈ N.

Consequently, each α in the kernel of Φ corresponds to a unique square-free integer
∏n

i=1 q
αi
i

whose sum of divisors is a perfect square.
Finally, since n−m =

∣∣{p : p prime, N+1
2 < p ≤ N}

∣∣→ ∞ as N → ∞ by the prime number
theorem, we have | kerΦ| ≥ 2n−m → ∞ as N → ∞ as well. Therefore, there are infinitely many
integers whose sum of divisors is a perfect square.
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Problem 5. (proposed by Dylan Toh)

A clock has an hour, minute, and second hand, all of length 1. Let T be the triangle formed by
the ends of these hands. A time of day is chosen uniformly at random. What is the expected
value of the area of T?

Notes on Marking. The correct numerical answer was worth 1 mark. Parameterising of
the continuous hand movements with a single variable (e.g. time) and setting up an integral
expression for the expected area of the determined triangle was worth 1 mark. Evaluating the
integral on segments on which the signed area is of fixed sign was worth 1 mark. Determining
the exact times at which the area flips sign (or exploiting related symmetries) was worth 1 mark.
Establishing the Lemma below regarding interleaving of sign-flip times was worth 3 marks.

Solution 1. (solution by Dylan Toh)

WLOG scale the time of the day such that 12 hours pass in time 2π. The hour, minute, and
second hands then move clockwise at angular speeds 1, 12, and 720 respectively.

We first derive two expressions for the area of the desired triangle. Let the centre of the
clock be O, and the tips of the hour, minute, and second hands be H,M,S respectively. At
time t ∈ [0, 2π], one has

∠MOS = 708t, ∠HOM = 11t, ∠HOS = 719t

where angles are directed clockwise. Thus

[SMH] = [MOS] + [HOM ]− [HOS] =
1

2
(sin 708t+ sin 11t− sin 719t)

is the signed area of the triangle.
Alternatively, noting that ∠HSM = 1

2∠HOM = 11t
2 (mod π), the absolute area of the

triangle may be computed by sine rule:

|[SMH]| = 1

2
· |SH| · |SM | · | sin∠HSM | =

∣∣∣∣12 · 2 sin 719t

2
· 2 sin 708t

2
· sin 11t

2

∣∣∣∣ .
Thus the signed area is

[SMH] = 2 sin
11t

2
sin

708t

2
sin

719t

2
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which may alternatively be shown directly by trigonometric identities on the first expression.
Crucially, observe that the sign (±) of [SMH] flips at integer multiples of 2π

11 ,
2π
708 , and

2π
719 .

Let (a, b, c) = (11, 708, 719); more generally, we consider coprime positive integers a, b, c with
a+ b = c. We wish to compute the average area of the triangle:

⟨A⟩ = 1

2π

∫ 2π

0

1

2
(sin at+ sin bt− sin ct) · s(t)dt

where s(t) ∈ {±1} is positive at t = 0+, and swaps sign at integer multiples of 2π
a , 2πb , and

2π
c .

Lemma. If 0 = t0 < t1 < t2 < · · · < ta+b−2 < ta+b−1 = 2π are the integer multiples of 2π
a , 2πb

in [0, 2π] rearranged in ascending order, then tk−1 <
2πk
c < tk for all k = 1, 2, . . . , a+ b− 1; i.e.

0 <
2π

c
< t1 <

4π

c
< t2 <

6π

c
< · · · < tc−2 <

2π(c− 1)

c
< 1.

Proof of Lemma. Since a, b, c are coprime, thus the values { i
a : i = 1, . . . , a− 1}, { j

b : j =

1, . . . , b− 1}, and {k
c : k = 1, . . . , c− 1} are distinct in (0, 1). It suffices to show that there is at

least one multiple 2πl
c between each tk−1 and tk, for each k = 1, 2, . . . , c− 1; if this is true, then

since there are only c − 1 such multiples, they must fall exactly in place (l = k). This may be
justified with a brief case check:

• If tk−1 and tk both have denominator a, then the interval [tk−1, tk] has length 2π
a ≥ 2π

c ,
and thus must contain an integer multiple of 2π

c .

• Similarly, if tk−1 and tk both have denominator b, then the interval [tk−1, tk] has length
2π
b ≥ 2π

c , thus contains an integer multiple of 2π
c .

• Finally, if tk−1 and tk are 2πi
a and 2πj

b in some order, then since i+j
a+b = i+j

c lies between i
a

and j
b , thus [tk−1, tk] contains the integer multiple 2π(i+j)

c .

The lemma thus allows us to evaluate the integral in pieces:

⟨A⟩ = 1

4π

c−1∑
k=1

(∫ 2πk
c

tk−1

dt−
∫ tk

2πk
c

dt

)
(sin at+ sin bt− sin ct)

=
1

4π

c−1∑
k=1

([
−cos at

a
− cos bt

b
+

cos ct

c

] 2πk
c

tk−1

−
[
−cos at

a
− cos bt

b
+

cos ct

c

]tk
2πk
c

)

=
1

4πa

c−1∑
k=1

(
cos atk−1 − 2 cos

2πak

c
+ cos atk

)
+ . . . (similar expressions for b and c).

We evaluate the trigonometric sums using the identity

Λm,n :=
n−1∑
x=0

cos
2πmx

n
=

{
n, n | m
0, n ∤ m

which follows from considering the real part of the geometric progression e2πimx/n.
Since {t1, . . . , tc−2} = {2πi

a : i = 1, . . . , a − 1} ∪ {2πb
a : j = 1, . . . , b − 1}, we may carefully

collect terms to obtain

⟨A⟩ = 1

4π

(
2Λa,a + 2Λa,b − 2Λa,c

a
+

2Λb,a + 2Λb,b − 2Λb,c

b
−

2Λc,a + 2Λc,b − 2Λc,c

c

)
=

1

2π

(
a

a
+

b

b
+

c

c

)
=

3

2π
.
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Comments.

(i) The lemma regarding interlacing of the values at which the area swaps sign is an instance
of the Rayleigh-Beatty theorem.

(ii) The final answer nicely agrees with the expected area of the triangle formed by 3 points
uniformly chosen along the circumference of the unit circle.

(iii) If a = 1, the final calculation includes extra non-zero terms (Λb,1 and Λc,1), resulting in a

slightly larger expected area ⟨A⟩ = 3
2π

(
1 + 1

b(b+1)

)
.

Solution 2. (solution by Ethan Tan, sketch only)

As before, we have

⟨A⟩ = 1

2π

∫ 2π

0

1

2
(sin at+ sin bt− sin ct) · s(t)dt.

Note that s(t) = f(at)f(bt)f(ct), where f(t) os a square wave with period 2π and amplitude 1.
By Fourier decomposition, we can write

f(t) =
2

π

∑
n∈Z, n odd

eint/n.

Hence we have

s(t) = f(at)f(bt)f(ct) =
8

π3abc

∑
k

eikt
∑

an+bm+cl=k
n,m,l∈2Z+1

1

nml
.

Since sin at = (eiat − e−iat)/2, and similarly for sin bt, sin ct, it suffices to extract the coeffieicnt
of eiat (noting that the coefficient of e−iat is the negative of the coefficient of eiat since s is odd).
One can fix a value of n, compute the sum over pairs (m, l) such that an+bm+cl = k with m, l
odd (these points lie on a line and so we need to compute the sum of the inverses of a quadratic
in m which can be done without too much trouble), and then sum back over n.
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