IMPERIAL_CAMBRIDGE
MATHEMATICS COMPETITION

ROUND TWO

25 February 2024

Name: \qquad
Contestant ID: \qquad
University: \qquad

Instructions:

- Do not turn over until told to do so.
- You will have 4 hours to solve 5 problems, each of which carries 10 marks.
- Use a black or blue pen or a dark pencil. Rulers, compasses, protractors, and erasers may be used but will not be required. All electronic devices, including calculators, are prohibited.
- Drinks are allowed, but food is prohibited.
- Write your solution to each problem on a different page. At the top of each page, write down the question number, your initials, and your contestant number. Use both sides whenever possible. Writing clearly and not too faintly - your work will be scanned for marking.
- Problems are listed roughly in order of difficulty. Proofs are expected for all problems even if they only ask for an answer.
- One complete solution will be awarded more marks than several unfinished attempts.
- You may not leave the contest venue in the first two hours or the last thirty minutes unless exceptional circumstances arise.
- You may take away the problems sheet and any rough work when leaving the venue.

Problem 1.

(a) Prove that there exist distinct positive integers $a_{1}, a_{2}, \ldots, a_{2024}$ such that for each $i \in\{1,2, \ldots, 2024\}, a_{i}$ divides $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{2024}+1$.
(b) Prove that there exist distinct positive integers $b_{1}, b_{2}, \ldots, b_{2024}$ such that for each $i \in\{1,2, \ldots, 2024\}, b_{i}$ divides $b_{1} b_{2} \cdots b_{i-1} b_{i+1} \cdots b_{2024}+2024$.

Problem 2. Let $n \geq 3$ be a positive integer. A circular necklace is called fun if it has n black beads and n white beads. A move consists of cutting out a segment of consecutive beads and reattaching it in reverse. Prove that it is possible to change any fun necklace into any other fun necklace using at most $(n-1)$ moves.

Note: Rotations and reflections of a necklace are considered the same necklace.

Problem 3. Let N be a fixed positive integer, S be the set $\{1,2, \ldots, N\}$, and F be the set of functions $f: S \rightarrow S$ such that $f(i) \geq i$ for all $i \in S$. For each $f \in F$, let P_{f} be the unique polynomial of degree less than N satisfying $P_{f}(i)=f(i)$ for all $i \in S$.

If f is chosen uniformly at random from F, determine the expected value of $\left(P_{f}\right)^{\prime}(0)$, where

$$
\left(P_{f}\right)^{\prime}(0)=\left.\frac{\mathrm{d} P_{f}(x)}{\mathrm{d} x}\right|_{x=0}
$$

Problem 4. Let $\left(t_{n}\right)_{n \geq 1}$ be the sequence defined recursively by $t_{1}=1, t_{2 k}=-t_{k}$, and $t_{2 k+1}=t_{k+1}$ for all $k \geq 1$. Consider the infinite series

$$
\sum_{n=1}^{\infty} \frac{t_{n}}{\sqrt[2024]{n}}
$$

(a) Prove that the series converges to a real number c.
(b) Prove that c is non-negative.
(c) Prove that c is strictly positive.

Problem 5. Is it possible to dissect an equilateral triangle into 3 congruent polygonal pieces (not necessarily convex), one of which contains the triangle's centre in its interior?

Note: The interior of a polygon does not include its perimeter.

