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Problem 1. (proposed by Ishan Nath)

(a) Prove that there exist distinct positive integers a1, a2, . . . , a2024 such that for each i ∈
{1, 2, . . . , 2024}, ai divides a1a2 · · · ai−1ai+1 · · · a2024 + 1.

(b) Prove that there exist distinct positive integers b1, b2, . . . , b2024 such that for each i ∈
{1, 2, . . . , 2024}, bi divides b1b2 · · · bi−1bi+1 · · · b2024 + 2024.

Notes on Marking. Most attempts were constructive. 1 mark was awarded for constructing
a (possibly invalid) sequence inductively. 4 marks were awarded for a valid construction for
either part. 2 additional marks were awarded for a valid construction for both parts. Proving
the construction for part (a) was valid was worth 1 mark, while proving the construction for
part (b) was valid was worth 2 marks. 1 mark was deducted if the construction was not trivially
increasing and the elements of the sequence were not proven to be distinct.

Solution 1. (solution by Dylan Toh)

We show that such numbers exist by construction:

(a) Set a1 = 1 and ai = a1a2 · · · ai−1 + 1 for i = 2, 3, . . . , 2024. This construction satisfies
aj ≡ 1 (mod ai) for all j > i ≥ 1, so the divisor relation is satisfied for all i ≥ 2:

a1a2 · · · ai−1ai+1 · · · a2024 + 1 ≡ a1a2 · · · ai−1 + 1 = ai ≡ 0 (mod ai), i ≥ 2

and the divisor relation is trivially true for i = 1 (since a1 = 1 divides any positive integer).

(b) Set a1 = 2024, a2 = 4048, and ai = a2a3 . . . ai−1 +1 for i = 3, . . . , 2024. This construction
satisfies aj ≡ 1 (mod ai) for all j > i ≥ 2, so the divisor relation is satisfied for all i ≥ 2:

a1a2 · · · ai−1ai+1 · · · a2024 + 2024 ≡ a1a2 · · · ai−1 + 2024

≡

{
2024ai ≡ 0 (mod ai), i ≥ 3

a1 + 2024 ≡ 0 (mod ai), i = 2.

For i = 1, note a2 · · · a2024 + 2024 = a1(2a3 · · · a2024 + 1) is a multiple of a1 = 2024.

Solution 2. (solution by contestants)

We show a different construction for part (b) (using ai from part (a) of the previous solution):

(b) Set bi = ai for i = 1, 2, . . . , 2023 and b2024 = b1b2 . . . b2023 + 2024. This construction now
satisfies bj ≡ 1 (mod bi) for all 2023 ≥ j > i ≥ 1, so for all 2023 ≥ i ≥ 2,

b1 . . . bi−1 bi+1 . . . b2023︸ ︷︷ ︸
≡1 (mod bi)

b2024 + 2024 ≡ 2024(b1 . . . bi−1) + 2024 = 2024bi ≡ 0 (mod bi),

and for i = 2024 we have

b1b2 . . . b2023 + 2024 = b2024 ≡ 0 (mod b2024).

The i = 1 case is trivially true.
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Problem 2. (proposed by Dylan Toh)

Let n ≥ 3 be a positive integer. A circular necklace is called fun if it has n black beads and n
white beads. A move consists of cutting out a segment of consecutive beads and reattaching
it in reverse. Prove that it is possible to change any fun necklace into any other fun necklace
using at most (n− 1) moves.

1 operation

Note: Necklaces related by rotations or reflections are the same necklace.

Notes on Marking. Many contestants attempted induction on the question statement as
given, and were unsuccessful at proving the induction step due to the lack of control over the
restored positions of the removed/merged beads in the original necklaces. Other unsuccessful
attempts were typically because the proposed algorithm failed to preserve the agreement in the
necklaces established by previous moves.

No marks were awarded for attempts to induct directly on the question statement, or for
using more moves (e.g. 2n moves). 2 partial marks were awarded for any of the first key steps of
the solutions below: (Solution 1) swapping 2 beads in 2 moves, (Solution 2) induction on a string
of beads, (Solution 3) induction on the length of a maximal common substring, or (Solution 4)
transforming any necklace into the fully ordered or fully alternating necklace. Additional marks
were awarded for further ideas or partial resolution of cases involved in the induction steps.

Solution 1. (solution by Dylan Toh)

The key observation for this solution is that 2 operations may be performed to precisely swap
a pair of beads in a necklace while preserving the rest of the necklace:

α

β

2 operations

β

α

Denote a necklace by a sequence a = (a1, . . . , a2n), where colours black and white are represented
by +1 and −1 respectively, and ai ∈ {±1} is the colour of the i-th bead in anticlockwise order.
Note that necklaces are equivalent up to rotations (a1, a2, . . . , a2n−1, a2n) ∼ (a2, a3, . . . , a2n, a1)
and reflections (a1, a2, . . . , a2n−1, a2n) ∼ (a2n, a2n−1, . . . , a2, a1).

Let a and b be two configurations of necklaces. Comparing a random rotation of a with b,
each bead of b agrees with the corresponding bead of a exactly half the time, so the average
number of beads agreed upon is exactly 1

2 · 2n = n. Formally, taking indices modulo 2n,

Xj =
2n∑
i=1

1ai+j=bi = # beads agreed upon by (a rotated clockwise by j beads) and b
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takes the average value

1

2n

2n∑
j=1

Xj =
1

2n

2n∑
i,j=1

1ai+j=bi =

2n∑
i,k=1

1ak=bi =
1

2n
· 2n2 = n.

Therefore, Xj ≥ n for some j. Furthermore, each Xj is even, since

Xj ≡
2n∑
i=1

(1ai+j=1 + 1bi=1) =

2n∑
k=1

1ak=1 +

2n∑
i=1

1bi=1 = n+ n ≡ 0 (mod 2).

We now split cases by the parity of n:

• Case I: n odd. WLOG X0 ≥ n. Since X0 is even, thus X0 ≥ n+1. Thus a and b differ in
≤ n−1 beads, and may be made equal via ≤ n−1

2 pairwise swaps, i.e. via ≤ 2 · n−1
2 = n−1

operations.

• Case II(a): n even, Xj > n for some j. WLOG X0 ≥ n+2. Then a and b differ in ≤ n−2

beads, and may be made equal via ≤ n−2
2 pairwise swaps, i.e. via ≤ 2 · n−2

2 = n − 2
operations.

• Case II(b): n even, Xj = n for all j. Note that some pair of adjacent beads in a is black
followed by white, while some pair of adjacent beads in b is white followed by black. We
may thus WLOG (by rotating a and b) that a1 = b2 = +1, a2 = b1 = −1. Since X0 = n,
thus reversing the segment a1a2 with a single operation makes X0 = n+2. By Case II(a),
the necklaces may then be made equal by a further n− 2 operations.

Solution 2. (solution by Dylan Toh)

Fix a black bead on each necklace, and align the necklaces with respect to the fixed black bead.
Each necklace may then be viewed as an ordered string of n − 1 black and n white beads. It
suffices to prove the following statement, by induction on k: given two strings of beads of equal
length l, each having k black beads, they are related by at most k − 1 operations (where an
operation consists of reversing a consecutive substring of beads).

The statement is trivially true for k = 0 (such strings are entirely white). For k ≥ 1,
let i, j ∈ {1, . . . , l} be the respective positions of the leftmost black beads of the two strings;
WLOG i ≥ j. Reversing the substring {j, . . . , i} of the first string results in both strings having
the leftmost black bead in position j. We then apply the induction hypothesis to make the
remaining substrings {j + 1, . . . , l} equal upon a further k − 2 operations.

Solution 3. (solution by contestants)

We show that if two aligned necklaces agree on a string of k beads, then then one may perform
a single move (or not perform a move at all) to extend the agreement to k+2 beads. The result
then follows from induction, beginning at k = 2 with no moves: one may pick a pair of adjacent
beads of opposite colour in each necklace, then rotate/reflect the necklaces such that they are
aligned.

Label the beads beside the agreed string for each necklace:

. . . ab[agreed string]cd . . . . . . ef [agreed string]gh . . .

where a, b, c, d, e, f, g, h ∈ {±1} and WLOG b = +1. By extending the agreed string if possible,
one may also assume b ̸= f and c ̸= g. Let there bem+ black andm− white beads in the segment
of each necklace excluding the agreed string; these numbers must agree on both strings, since
both have the same number of black and white beads. We then consider a series of cases:
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1. If a ̸= b, then m+,m− ≥ 1. Here, have a = −1, b = +1, f = −1. Let x = +1 be the first
black bead on the left of the agreed string on the second necklace. One may reverse the
string x . . . ef on the second necklace to get further agreement on the two beads left of
the original agreed string.

2. The cases c ̸= d, e ̸= f , or g ̸= h are similarly resolved.

3. If c ̸= b, then c = −1, then b = g = +1 and c = f = −1. One may thus reverse the string
ba . . . dc on the first necklace, to get further agreement on the beads left and right of the
original agreed string.

4. The remaining case is a = b = c = d = +1, e = f = g = h = −1. WLOG m+ ≥ m−. If
within the remaining portion of the second necklace, each black bead has a white bead to
its left, then one may carry out this pairing, in which some white beads remain unpaired
(such as f and g), implying m+ < m−, a contradiction. Thus there must be a pair of
consecutive black beads xy (x = y = +1) in the remaining portion of the second necklace.
One may reverse the string xy . . . ef of the second necklace to get further agreement on
the two beads left of the original agreed string.

Since 2n = 2 + 2 · (n− 1), thus full agreement can be achieved in at most n− 1 moves.

Solution 4. (solution by contestants)

For necklaces A,B, let d(A,B) denote the minimum number of moves required to change one
necklace into the other. We note that this defines a discrete metric on the set of necklaces: in
particular, the triangle inequality d(A,B)+d(B,C) ≥ d(A,C) holds true, by concatenating the
sequences of moves.

For a necklace A, let m(A) denote the number of pairs of adjacent beads differing in colour.
Let Ω be the necklace with n consecutive white beads followed by n consecutive black beads,
and Π the fully alternating necklace; note 2 ≤ m(A) ≤ 2n, equality on the left iff A = Ω, and
equality on the right iff A = Π. Furthermore, m(A) is always even: it counts the number of
contiguous monochromatic blocks, and the contiguous blocks alternate in colour around the
necklace.

First, we show for any necklace A with m(A) > 2, there is a move that reduces m(A) by 2.
Pick two pairs of adjacent beads ab, cd with the black bead on the left of the white bead (i.e.
a = c = +1, b = d = −1); this is possible since there are at least two contiguous blocks of white
beads, and one may take each of their left boundaries. Then the move

. . . a|b . . . c|d . . . 7→ . . . a|c . . . b|d . . .

reduces m(A) by 2.
Next, we show that for any necklace A with m(A) < 2n, there is a move that increases m(A)

by 2. Pick a pair of adjacent white beads ab; this is always possible, otherwise each white bead
may be paired with the black bead to the right of it, and the necklace formed by these n pairs
is fully alternating. Similarly, pick a pair of adjacent black beads cd. Then, the move

. . . a|b . . . c|d . . . 7→ . . . a|c . . . b|d . . .

increases m(A) by 2.
Finally, we note that if m(A) = 2k, then by repeatedly performing moves to decrease m(A),

one has d(A,Ω) ≤ k − 1, while by repeatedly performing moves to increase m(A), one has
d(A,Π) ≤ n− k. Therefore, d(A,Ω) + d(A,Π) ≤ n− 1.

Finally, for two necklaces A,B, one applies the triangle inequality to obtain

2d(A,B) ≤ d(A,Ω) + d(Ω, B) + d(A,Π) + d(Π, B) ≤ 2(n− 1),

thus d(A,B) ≤ n− 1, so one may transform A to B in at most n− 1 moves.
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Comment. The number of operations n − 1 is tight. This may be seen by noting (in the
notation of Solution 4) that a single move on a necklace A changesm(A) by at most 2. Therefore,
at least n− 1 operations are required to go between necklaces Ω and Π.
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Problem 3. (proposed by Ishan Nath)

Let N be a fixed positive integer, S be the set {1, 2, . . . , N}, and F be the set of functions
f : S → S such that f(i) ≥ i for all i ∈ S. For each f ∈ F , let Pf be the unique polynomial of
degree less than N satisfying Pf (i) = f(i) for all i ∈ S.

If f is chosen uniformly at random from F , determine the expected value of (Pf )
′(0), where

(Pf )
′(0) =

dPf (x)

dx

∣∣∣∣
x=0

.

Notes on Marking. No marks were deducted for omitting the N = 1 case. 2 partial marks
were awarded for formulating a correct summation that evaluated to the answer, as in solution
1. Additional marks were awarded for evaluating specific terms of this summation.

No marks were obtained for observing this was the average value of the x coefficient in each
polynomial. Setting up or establishing the fact that the solution was linear in the space of
polynomials was worth up to 5 marks.

Solution 1. (solution by Dylan Toh)

For N = 1, the polynomial is constant, so the answer is 0. Henceforth, we assume N ≥ 2.
Identifying f ∈ S with the tuple (f(1), f(2), . . . , f(N)) ∈ RN , we equivalently sample f

uniformly among the finite set {1, . . . , N} × {2, . . . , N} × · · · × {N} of N ! tuples in RN .
Note the Lagrange interpolation map Ψ : RN → R[x] given by

a = (a1, . . . , aN )
Ψ7−→

N∑
i=1

ai

 ∏
j∈{1,...,N}\{i}

x− j

i− j


is linear as a map between R-vector spaces, and Ψ(a) is the unique polynomial P of degree < N
such that P (i) = ai for i = 1, . . . , N . Also, the derivative-evaluation map d

dx

∣∣
x=0

: R[x] → R is
linear. Thus by linearity of expectation,

Ans = E
[
dPf (x)

dx

∣∣∣∣
x=0

]
=

d

dx

∣∣∣∣
x=0

E [Ψ(f)] =
d

dx

∣∣∣∣
x=0

Ψ(E[f ]).

E[f ] may be computed conveniently, again by linearity of expectation in each coordinate:

E[f ] =
(
1 + 2 + · · ·+N

N
,
2 + · · ·+N

N − 1
, . . . ,

N

1

)
=

1

2
(N + 1, N + 2, . . . , N +N).

Thus Ψ(E[f ]) = 1
2(N + x), and the desired answer is d

dx

∣∣
x=0

N+x
2 = 1

2 .

Solution 2. (solution by contestants)

Using Lagrange interpolation we may write

Pf (x) =
N∑
i=1

f(i)
N∏
j=1
j ̸=i

x− j

i− j
=

N∑
i=1

(x− 1) · · · (̂x− i) · · · (x−N)

(i− 1) · · · (̂i− i) · · · (i−N)
f(i),
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where the hat indicates the corresponding term is not present in the product. From this the
derivative may be computed:

(Pf )
′(x) =

N∑
i=1

N∑
j=1
j ̸=i

(x− 1) · · · (̂x− i) · · · ̂(x− j) · · · (x−N)

(i− 1) · · · (̂i− i) · · · (i−N)
f(i),

(Pf )
′(0) =

∑
i ̸=j

(−1) · · · (̂−i) · · · (̂−j) · · · (−N)

(i− 1) · · · (̂i− i) · · · (i−N)
f(i)

=
∑
i ̸=j

N !(−1)N

(i− 1)!(N − i)!(−1)N−i · i · j
f(i)

=
∑
i ̸=j

(−1)i

j

(
N

i

)
f(i) =

∑
i,j

(−1)i

j

(
N

i

)
f(i)−

∑
i=j

(−1)i

j

(
N

i

)
f(i)

= HN

N∑
i=1

(−1)i
(
N

i

)
f(i)−

N∑
i=1

(−1)i

i

(
N

i

)
f(i),

where HN = 1 + 1
2 + · · · + 1

N is the N ’th harmonic number. Now taking the expectation,
we may note, as in solution 1, that E[f(i)] = N+i

2 , as each coordinate choice is uniform in
{i, i+ 1, . . . , N}. Hence

E(Pf )
′(0) = HN

N∑
i=1

(−1)i
(
N

i

)
N + i

2
−

N∑
i=1

(−1)i

i

(
N

i

)
N + i

2

=
HN

2

N∑
i=1

(−1)i · i
(
N

i

)
+

(
HN ·N

2
− 1

2

) N∑
i=1

(−1)i
(
N

i

)
− N

2

N∑
i=1

(−1)i

i

(
N

i

)
.

We have three sums to evaluate. First note that, from the binomial formula

(1− x)N =
N∑
i=0

(−1)i
(
N

i

)
xi.

• Plugging in x = 1,

0 =
N∑
i=0

(−1)i
(
N

i

)
xi =⇒

N∑
i=1

(−1)i
(
N

i

)
= −1.

• Differentiating and plugging in x = 1,

N · (1− x)N−1 =
N∑
i=0

(−1)i · i
(
N

i

)
xi−1 =⇒ 0 =

N∑
i=1

(−1)i · i
(
N

i

)
,

where the i = 0 term is trivially 0.

• The final term may be found in a couple of ways. Firstly,

N∑
i=1

(−1)i

i

(
N

i

)
=

N∑
i=1

(−1)i

i

(
N

i

)
xi
∣∣∣∣
x=1

=

N∑
i=1

∫ 1

0
(−1)i

(
N

i

)
xi−1 dx

=

∫ 1

0

(1− x)N − 1

x
dx =

∫ 0

1

uN − 1

1− u
(−1) du

= −1

∫ 1

0
(uN−1 + · · ·+ u+ 1) du = −1

(
uN

N
+ · · ·+ u2

2
+

u

1

)∣∣∣∣u=1

u=0

= −HN .
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Alternatively, we may proceed by induction. For N = 1 this term may be calculated to
give −1 = −H1, and

N∑
i=1

(−1)i

i

(
N

i

)
=

N∑
i=1

(−1)i

i

((
N − 1

i

)
+

(
N − 1

i− 1

))

=
N−1∑
i=1

(−1)i

i

(
N − 1

i

)
+

N∑
i=1

(−1)i

i

(
N − 1

i− 1

)

= −HN−1 +
1

N

N∑
i=1

(−1)i
(
N

i

)
= −HN ,

using the first sum we calculated.

Substituting all these terms, we find

E(Pf )
′(0) =

HN

2
(0) +

(
HN ·N

2
− 1

2

)
(−1)− N

2
(HN ) =

1

2
.

Solution 3. (solution by contestants)

Let P be the set of all such polynomials, i.e. P = {Pf | f ∈ F}. Then, define for each P ∈ P
the polynomial h(P ) by

h(P )(x) = N + x− P (x).

Then I claim that h(P ) ∈ P, i.e. h is an endomorphism on P. Indeed, notice P takes integer
values on {1, . . . , N} if and only if h(P ) does, P is of degree less than N if and only if h(P ) is
as well, and subsequently

P ∈ P ⇐⇒ i ≤ P (i) ≤ N for all i ∈ {1, . . . , N}
⇐⇒ N − i ≥ N − P (i) ≥ 0 for all i ∈ {1, . . . , N}
⇐⇒ N ≥ N + i− P (i) = h(P )(i) ≥ i for all i ∈ {1, . . . , N}
⇐⇒ h(P ) ∈ P.

Now I claim that h is a bijection. This is immediate from the fact h(h(P )) = N+x−(N+x−P ) =
P . Since P is finite, if P is uniform on P, then so is h(P ). Therefore, for P uniformly chosen
in P,

E[P ′(0)] =
1

2

(
E[P ′(0)] + E[h(P )′(0)]

)
=

1

2

(
E[(P + h(P ))′(0)]

)
=

1

2
E[(N + x)′(0)] =

1

2
· 1 =

1

2
,

by linearity of expectation and derivative.

Solution 4. (solution by contestants)

Setting this up algebraically, the polynomial Pf which satisfies Pf (i) = f(i) has coefficients
a0, a1, . . . , aN−1 given by the following equation:

1 1 1 · · · 1 1
1 2 4 · · · 2N−2 2N−1

1 3 9 · · · 3N−2 3N−1

...
...

...
. . .

...
...

1 N − 1 (N − 1)2 · · · (N − 1)N−2 (N − 1)N−1

1 N N2 · · · NN−2 NN−1





a0
a1
a2
...

aN−2

aN−1


=



f(1)
f(2)
f(3)
...

f(N − 1)
f(N)


.
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This matrix V on the left is a Vandermonde matrix, which is invertible with inverse V −1. Hence
we can analogously write this as 

a0
a1
...

aN−1

 = V −1


f(1)
f(2)
...

f(N)

 .

Notice (Pf )
′(0) = a1. hence E(Pf )

′(0) = E[a1]. But the equation on the right is a linear
equation in the f(i), hence

E[a0]
E[a1]
...

E[aN−1]

 = EV −1


f(1)
f(2)
...

f(N)

 = V −1


E[f(1)]
E[f(2)]

...
E[f(N)]

 = V −1


(N + 1)/2
(N + 2)/2

...
(N +N)/2

 .

But since V −1 is the inverse of the V , V −1V = I, so we get

V −1


N/2
N/2
...

N/2

 =


N/2
0
...
0

 , V −1


1/2
2/2
...

N/2

 =


0
1/2
...
0

 .

This shows that E[a1] = 1/2, as desired.
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Problem 4. (proposed by Dylan Toh)

Let (tn)n≥1 be the sequence defined recursively by t1 = 1, t2k = −tk, and t2k+1 = tk+1 for all
k ≥ 1. Consider the infinite series

∞∑
n=1

tn
2024
√
n
.

(a) Prove that the series converges to a real number c.

(b) Prove that c is non-negative.

(c) Prove that c is strictly positive.

Notes on Marking. 2 marks were awarded for (a), with 1 partial mark for establishing the
convergence of a subsequence of partial sums. 4 marks were awarded for (b), with 1 partial mark
for applying the mean value theorem or equivalent. 4 marks were awarded for (c). No marks
were awarded for establishing properties of (tn) or attempting common series convergence tests.

Solution 1. (solution by Dylan Toh)

Note (tn) is the Thue-Morse sequence: one may show by (strong) induction that

tn = (−1)(number of 1’s when n−1 is written in binary).

Thus the following properties follow: tn+2m = −tn for 1 ≤ n ≤ 2m; and more generally,
tn+2m(k−1) = tntk for 1 ≤ n ≤ 2m, k ≥ 1. These properties will be used to bound partial sums
of the series, via iterated applications of the mean value theorem (MVT).

We investigate in generality the sum

L = L(s) =

∞∑
n=1

tnn
−s

for s > 0; the problem then concerns the value of c = L( 1
2024).

(a) Convergence of L(s) for s > 0: Let LN =
∑N

n=1 tnn
−s be the partial sums. Note

lim
N→∞

L2N =

∞∑
n=1

(
t2n−1(2n− 1)−s + t2n(2n)

−s
)
=

∞∑
n=1

tn
(
(2n− 1)−s − (2n)−s

)
is absolutely convergent, since

∣∣(2n− 1)−s − (2n)−s
∣∣ = ∣∣∣∣∣

(
d

dx
x−s

)
x∈(2n−1,2n)

∣∣∣∣∣ ≤ s(2n− 1)−(1+s)

by MVT, and

s
∞∑
n=1

(2n− 1)−(1+s) ≤ s

(
1 +

1

2

∫ ∞

1
x−(1+s)dx

)
= s

(
1 +

1

2s

)
< +∞.

Thus L2N → L converges as N → ∞.

Consequently, LN = L2⌊N/2⌋ +O(N−s) → L+ 0 = L converges as N → ∞.
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(b) Iterated MVT: Let f be a smooth function, and x ∈ R. We induct on m ≥ 1 that

fm(x) =

2m∑
n=1

tnf(x+ n) = (−1)m2m(m−1)/2f (m)(x+ ξ)

for some ξ ∈ (1, 2m) dependent on x.

Base case m = 1: f1(x) = f(x+ 1)− f(x+ 2) = −f ′(x+ ξ) for some ξ ∈ (1, 2), by MVT.

Induction hypothesis m > 1: note

fm(x) = fm−1(x)− fm−1(x+ 2m−1) = −2m−1f ′
m−1(x+ ξ1)

for ξ1 ∈ (0, 2m−1), by MVT. By the induction hypothesis,

f ′
m−1(x+ ξ1) = (−1)m−12(m−1)(m−2)/2f (m)(x+ ξ1 + ξ2)

for ξ2 ∈ (1, 2m−1). The result follows by setting ξ = ξ1 + ξ2 ∈ (1, 2m).

(c) Bound on L: Setting f(x) = x−s and grouping terms into blocks of 2m terms,

L = lim
N→∞

L2mN =
∞∑
k=1

2m∑
n=1

t2m(k−1)+nf(2
m(k − 1) + n)

=
∞∑
k=1

tkfm(2m(k − 1))

=
∞∑
k=1

tk(−1)m2m(m−1)/2f (m)(2m(k − 1) + ξk),

where ξk ∈ (1, 2m) for all k ≥ 1.

Note f (m)(x) = (−1)ms(s+ 1)(s+ 2) . . . (s+m− 1)x−(s+m). Thus,

L = s(s+ 1)(s+ 2) . . . (s+m− 1)2m(m−1)/2
∞∑
k=1

tk(2
m(k − 1) + ξk)

−(s+m).

Since x−(s+m) is decreasing, and t1 = 1, thus
∞∑
k=1

tk(2
m(k − 1) + ξk)

−(s+m) ≥ (2m)−(s+m) − (2m + 1)−(s+m) −
∑
r≥2

(2mr + 1)−(s+m)

≥ (2m)−(s+m)

1−
(
1− 1

2m + 1

)s+m

−
∑
r≥2

r−(s+m)


≥ (2m)−(s+m)

1−
(
1− 1

2 · 2m

)m

−
∑
r≥2

r−m

 .

To show the limit L > 0 is strictly positive, it suffices to pick an m ∈ N such that the
expression E enclosed in the brackets is strictly positive. Using the bound (1 − x)m ≥
1 − mx +

(
m
2

)
x2 for 0 < x < 1 (Bonferroni’s/true by induction), we may bound the

expression E by

E ≥ m

2
2−m −

(
m

2

)
2−2m−2 − 2−m −

∑
r≥3

r−m

≥ m2−m

(
1

2
−m2−m − 1

m
− 2m

m

∫ ∞

2
x−mdx

)
= m2−m

(
1

2
−m2−m − 1

m
− 1

m(m− 1)

)
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with m2−m, 1
m , 1

m(m−1) → 0 as m → ∞. Thus E > 0 for sufficiently large m, and
L > 0.

Comment. One may directly use iterated MVT to show L2m ≥ 0 for all m ∈ N, thus the
limit L ≥ 0. However, strict positivity L > 0 requires a more careful bounding.

Comment. One may work out a concrete positive bound with m = 2 (i.e. grouping terms
into blocks of 4), if one is careful with explicit computations:

s−1L(s)
∣∣
s=1/2024

≥ 1− 2−s − 3−s + 4−s

s
− 2(s+ 1)

∑
r≥1

(4r + 1)−(s+2)

∣∣∣∣∣∣
s=1/2024

≥ 0.35− 2.001

5−2 +
∑
r≥9

r−2

 ≥ 0.35− 2.001
(
5−2 + 8−1

)
> 0.

Solution 2. (solution by Timur Pryadilin with minor additions by Anubhab Ghosal)

Fix α = 1
2024 . Note that tn ∈ {1,−1} and that

t4k+1 = −t4k+2 = −t4k+3 = t4k+4 = tk+1.

As 1
nα → 0, it suffices to consider the convergence of the series

S :=
∑

n∈4Z⩾0+1

tn

(
1

nα
− 1

(n+ 1)α
− 1

(n+ 2)α
+

1

(n+ 3)α

)
=

∑
n∈4Z⩾0+1

tn
nα

f
( 1

n

)
,

where f(x) := 1− (1 + x)−α − (1 + 2x)−α + (1 + 3x)−α.
One computes the successive derivatives of f to get that f(0) = f ′(0) = 0, f ′′(0) = 4α(α+1)

and that

f ′′′(x) = α(α+ 1)(α+ 2)
(
(1 + x)−α−3 + 8(1 + 2x)−α−3 − 27(1 + 3x)−α−3

)
.

For x ∈ [0, 15 ], (1 + 3x) ⩽ 4
3(1 + x) and (1 + 2x) ⩾ (1 + x) and so

f ′′′(x) ⩽ α(α+ 1)(α+ 2)(1 + x)−α−3

(
9− 27

(3
4

)3+α
)

⩽ 0 for x ∈
[
0,

1

5

]
.

Letting h(x) = f(x) − 2α(α + 1)x2, one has h(0) = h′(0) = h′′(0) = 0 and that h′′′(x) =
f ′′′(x) ⩽ 0 for x ∈ [1, 15 ]. Therefore,

f(x) ⩽ 2α(α+ 1)x2 for x ∈
[
0,

1

5

]
.

It follows that S is absolutely convergent and that

|S − f(1)| ⩽ 2α(α+ 1)
∑

n∈4N+1

1

n2+α
⩽ 2α(α+ 1)

1

42
ζ(2) = α(α+ 1)

π2

48
<

α

4
.

Using the inequalities 1− x ⩽ e−x ⩽ 1− x+ x2

2 , one can bound

f(1) ⩾ α

(
log

(
3

2

)
− α

2
(log(2)2 + log(3)2)

)
>

α

4
,

and we are done.

13



Problem 5. (proposed by Dylan Toh)

Is it possible to dissect an equilateral triangle into 3 congruent polygonal pieces (not necessarily
convex), one of which contains the triangle’s centre in its interior?

Note: The interior of a polygon does not include its perimeter.

Notes on Marking. 2 marks were awarded for addressing the case where a piece touches two
corners of △. 4 marks were awarded for formulating the notion of a nice vertex (a 60◦ vertex
shared by its convex hull), and addressing the various cases of 1, 3, or more than 3 nice vertices.
In the final case of 2 nice vertices, 1 mark was awarded for showing some two pieces are related
by a symmetry of △. 1 mark was awarded for resolving the case where the symmetry is a rota-
tion, and 2 marks awarded for resolving the case where the symmetry is a reflection. No marks
were awarded for the correct answer, or showing that there is a vertex common to all 3 polygons.

Solution 1. (solution by Dylan Toh)

No. Refer to the equilateral triangle as △ (WLOG of side length 1) with centre O. Suppose
otherwise that one may dissect △ into identical polygons P1, P2, P3

∼= P , one of which contains
O in its interior. We adopt a two-step proof:

1. By considering how the vertices of △ are distributed among the pieces Pi, we conclude
that two of the pieces are related by either a 120◦ rotation about O (called a ‘central
rotation’), or a reflection about a reflection axis of △ (called an ‘axial reflection’).

2. We then derive a contradiction in either case.

Let P̃ and P̃1, P̃2, P̃3 denote the convex hulls of the polygons. We call a vertex of P ‘nice’ it
has internal angle 60◦, and also corresponds to a vertex of P̃ of the same internal angle 60◦.

• Case I: a piece touches two corners of △. Then P has two vertices of distance 1 apart.
Since the only pairs of points in △ of distance 1 apart are a pair of vertices, so each piece
Pi must touch (at least) two corners of △.

Therefore, each Pi contains a path in its interior (except for its endpoints) between two
corners of △. Drawing these paths out, at least one path (in P1, say) bounds a region
with a side of △ not containing the other two paths; consequently, P1 must share a full
side with a side of △. Since the pieces are congruent, thus each piece Pi shares a full side
with △ as well.

Thus P has a unique side of length 1, called the ‘long side’; fixing an orientation of
the boundary of P , the position/orientation of a copy of P is thus determined by the
position/orientation of that side. By pigeonhole, two of the long sides of P1, P2, P3 are
oriented in the same direction around △ (say P1, P2); they are thus related by a central
rotation (see Case A below).

• Case II: Each of the 3 corners of △ is a vertex of a unique Pi. This corresponds to a nice
vertex of each Pi.

Note P̃ has ≤ 3 vertices of internal angle 60◦ (since the total sum of external angles of
convex polygon P̃ is 360◦, but each nice vertex contributes an external angle of 120◦),
with equality if and only if P̃ is equilateral. If P̃ were equilateral, then it must have side

14



length s > 1√
3
> 1

2 for a piece Pi to contain the centre. But this means (identifying a side

of △ with interval [0, 1]) there is a path from 0 to s inside some P1, and a path from 1− s
to 1 inside some other P2; these paths must intersect, implying that the interiors of P1

and P2 intersect, a contradiction.

Thus P̃ has ≤ 2 vertices of internal angle 60◦, so P has ≤ 2 nice vertices. Meanwhile,
each corner of Pi agreeing with a corner of △ corresponds to a nice vertex of P . By
pigeonhole, two of them must agree (say, corresponding to P1, P2). The two possible cases
of orientation then show that P1, P2 are either related by a central rotation (see Case A
below) or an axial reflection (see Case B below).

In both cases above, one concludes that there are two pieces P1, P2 related either by a central
rotation or an axial reflection.

• Case A: P1, P2 are related by a central rotation. Let τ be this rotation; one has τP1 = P2.

Let P̂3 = τP2 = τ−1P1; note that P̂3 ∩P1 = τ−1(P1 ∩P2) and P̂3 ∩P2 = τ(P2 ∩P1), so P̂3

has disjoint interiors with P1, P2 (but is congruent). We must thus have equality P3 = P̂3

(e.g. by an area argument: P3 must contain P̂3, but they are congruent), and all pieces
are related by rotation about O; thus all three pieces contain O, a contradiction.

• Case B: P1, P2 are related by an axial reflection about axis l. Since this axis passes through
O, thus O is not in the interior of P1 or P2 (since it can’t be in both interiors); it is thus
contained in the interior of P3, which is also reflectionally symmetric about l.

If P only had one nice vertex, then (by the argument in Case II above) the pair P1, P3 is
also related by either a central rotation (in which Case A derives a contradiction) or an
axial reflection (which would imply O is also not in the interior of P3, a contradiction).

Thus P has 2 nice vertices, and (by the reflectional symmetry of P3 about l) the other
nice vertex of P3 must lie on l as well. But then O lies on the line segment between the
two nice vertices of P3 (which is also the angle bisector of either nice vertex, and has
length > 1√

3
). This line segment also lies on l, and is thus contained in the interior of

P3, since P1, P2 are reflectionally symmetric about l. We may furthermore assume that
we are in Case II above (since Case I is resolved by Case A). Thus P1, P2 also have nice
vertices agreeing with corners of △, thus they contain the respective angle bisectors of
length > 1√

3
. So all three pieces contain O, a contradiction.

Comment. It is not known whether a circle can be dissected into finitely many identical
pieces, one of which contains the centre in its interior. One may wish to investigate if a dissection
of the equilateral triangle into 3 similar polygons (i.e. identical up to scaling) is possible.
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