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Problem 1. (proposed by the ICMC Problem Committee)

An automorphism of a group (G, ∗) is a bijective function f : G → G satisfying f(x ∗ y) =
f(x) ∗ f(y) for all x, y ∈ G.

Find a group (G, ∗) with fewer than (201.6)2 = 40642.56 unique elements and exactly 20162

unique automorphisms.

Solution. (solution by the ICMC Problem Committee)

The main idea is to consider direct products of cyclic groups and compute their automorphism
groups systematically under the prime factorisation 2016 = 25 · 32 · 7.

For a group G, denote its set of automorphisms by AutG, which can clearly be endowed
with the structure of a group under composition. For natural numbers m and n, denote the
cyclic group of m elements by Cm, and denote the direct product of n copies of it by Cnm. The
following are several useful, though potentially superfluous, observations.

• An automorphism of Cm must map generators to generators, so that when m = p is prime,
AutCp is cyclic with p− 1 elements, and can be identified with Cp−1.

• In fact, without the condition that m is prime, AutCm can be identified with CΦ(m),
where Φ(m) is number of natural numbers less than and coprime to m.

• For a natural number k coprime to m, the direct product AutCk×AutCm can be identified
with Aut(Ck × Cm), by sending the generators of AutCk and AutCm to their product.

• If m = p were prime, the direct product AutCnp can be identified with GL(n, p), the group
of n× n matrices with entries integers modulo p, which has exactly

(pn − p0) · (pn − p1) · · · · · (pn − pn−2) · (pn − pn−1)

elements, by viewing Cnp as an n-dimensional vector space over the field of p elements.

Using these observations, a group with exactly 20162 unique automorphisms can be reverse-
engineered from its prime factorisation. First observe that

2016 = 12 · 7 · 4 · 3 = 12 · (23 − 20) · (23 − 21) · (23 − 22).

Then AutC13 has 12 elements and AutC3
2 has (23 − 20) · (23 − 21) · (23 − 22) elements. Thus

Aut(C13 × C3
2 ) has 2016 elements, while C13 × C3

2 has 13 · 23 elements. Next observe that

2016 = 42 · 8 · 6 = 42 · (32 − 30) · (32 − 31).

Then AutC43 has 42 elements and AutC2
3 has (32−30) ·(32−31) elements. Thus Aut(C43×C2

3 )
has 2016 elements, while C43 × C2

3 has 43 · 32 elements. Finally observe that

2002 < 13 · 23 · 43 · 32 < 2012.

Thus C3
2 × C2

3 × C13 × C43 is a group with the desired properties.
With similar computations, one may find other groups with fewer elements but still having

exactly 20162 automorphisms, such as C3
2 ×C2

7 ×C13, C2
3 ×C2

7 ×C43, or C3
2 ×C2

3 ×C19 ×C29.



Problem 2. (proposed by the ICMC Problem Committee)

Let R2 denote the set of points in the Euclidean plane. For points A,P ∈ R2 and a real number
k, define the dilation of A about P by a factor of k as the point P +k(A−P ). Call a sequence of
points A0, A1, A2, . . . ∈ R2 unbounded if the sequence of lengths |A0 −A0|, |A1 −A0|, |A2 −A0|,
. . . has no upper bound.

Now consider n distinct points P0, P1, . . . , Pn−1 ∈ R2, and fix a real number r. Given a
starting point A0 ∈ R2, iteratively define Ai+1 by dilating Ai about Pj by a factor of r, where
j is the remainder of i when divided by n.

Prove that if |r| ≥ 1, then for any starting point A0 ∈ R2, the sequence A0, A1, A2, . . . is
either periodic or unbounded.

Solution. (solution by the ICMC Problem Committee)

Let a glide dilation denote a dilation followed by a translation. We first show that the compo-
sition of a finite number of glide dilations is itself a glide dilation. Let f, g : R2 → R2 be glide
dilations defined by

f(X) = P + p(X − P ) +Q = 0 + p(X − 0) + (1− p)P +Q

g(X) = R+ r(X −R) + S = 0 + r(X − 0) + (1− r)R+ S

for fixed P,Q,R, S ∈ R2 and fixed real numbers p and r. Then note that

(f ◦ g)(X) = f(g(X))

= 0 + pr(X − 0) + (1− p)P +Q+ p(1− r)R+ pS

= 0 + pr(X − 0) + T

and so f ◦ g is a glide dilation with dilation factor equal to the product of the constituent
dilations’ factors, and with a translation vector equal to some T ∈ R2. By induction, the
composition of any finite number of glide dilations is thus also a glide dilation, as desired.

Now fix |r| ≥ 1, and denote the dilation of some point X about Pi by di(X). As dilations
are a subset of glide dilations, D = dn−1 ◦ (· · · ◦ (d2 ◦ (d1 ◦ d0)) · · · ) is a glide dilation. Let the
dilation factor of D be d = rn, where |rn| ≥ 1, so that the dilation factor of D2 = D ◦ D is
d2 ≥ 1. Note that D2(Ai) = Ai+2n for i | 2n. There are now two cases to consider:

1. Suppose that d2 > 1. Then we may write D2(X) = 0+d2(X−0) +A for some A ∈ R2 as

D2(X) = 0 + d2(X − 0) +
(1− d2)A

1− d2

=
A

1− d2
+ d2

(
X − A

1− d2

)
Which is purely a dilation with dilation factor d2 > 1. Hence it is clear that if A0 = A

1−d2
then A0 = A2n = A4n = · · ·, so the sequence is periodic, and if not, then the subsequence
A0, A2n, A4n, . . . is unbounded.

2. Now suppose that d2 = 1. Then we may write D2(X) = 0 + (X − 0) + B = X + B for
some B ∈ R2, which is purely a translation with translation vector B. Then it is clear
that for any choice of A0, the sequence is unbounded if B 6= 0 and periodic if B = 0.



Problem 3. (proposed by Daniel Goodair and the ICMC Problem Committee)

Let R denote the set of real numbers. A subset S ⊆ R is called dense if any non-empty open
interval of R contains at least one element in S. For a function f : R → R, let Of (x) denote
the set {x, f(x), f(f(x)), . . . }.

(a) Is there a function g : R → R, continuous everywhere in R, such that Og(x) is dense for
all x ∈ R?

(b) Is there a function h : R → R, continuous at all but a single x0 ∈ R, such that Oh(x) is
dense for all x ∈ R?

Solution. (solution by the ICMC Problem Committee)

Note that part (a) was worth 2 marks and part (b) was worth 8 marks.

(a) We prove that there is no such function. Note that the graph of a continuous function
either intersects the graph of the function f(x) = x or it does not. If it does, then let x0

be the intersection point. We see that Og (x0) = {x0}, a contradiction. However, if the
graph of g does not intersect the graph of f , then by intermediate value theorem, it must
lie completely above f or completely below f . In either case, Og(x) is bounded from one
side, and so cannot be dense in R.

(b) We show that such a function exists. The idea of this construction is to take the continuous
function r : S1 → S1, where S1 denotes the unit circle centred at the origin, which rotates
a point by 1 radian anti-clockwise. We note that the orbit of any point is dense, by
Problem 6 of ICMC 2019-2020 Round One. The stereographic projection from the circle
to the line is continuous except for the point at infinity so that r composed with the
projection is also continuous except for the point at infinity. We let the point on S1 which
maps to the point at infinity instead map to 0. We note that the densities of all orbits are
preserved, and that there is exactly one discontinuity in an otherwise continuous function.

Formally, let f̃ : R→ (0, 1) be a homeomorphism. In particular, we can take g : (−1, 1)→
(0, 1), g(x) = x+1

2 and h : R → (−1, 1), h(x) = x
1+|x| and note that f̃ = g ◦ h is a

homeomorphism between R to (0, 1).

Fix α ∈ (0, 1) not a rational and consider the circle rotation Rα : [0, 1) → [0, 1) given by
R(x) = x+ α mod 1. Define:

fc(x) =

{
f̃−1 ◦Rα ◦ f̃ if x 6= f̃−1(1− α)

c if x = f̃−1(1− α)

where c is any value in R\{f̃−1(−n · α mod 1) | n ∈ Z≥1}.
We show that Of (x) is dense in R for all real x. If x 6∈ {f−n(f̃−1(1−α)) | n ∈ Z≥1}, then

fnc (x) = f̃−1 ◦Rnα(f̃(x))

hence Of (x) is the homeomorphic image of ORα . As ORα is dense, we have that Of (x) is
dense in R. If If x ∈ {f−n(f̃−1(1− α)) | n ∈ Z≥1}, by iterating f we eventually hit c and
reduce the problem to the previous case. Thus, we have exhibited a family of continuous
functions which are discontinuous at one point and have the required property.



Problem 4. (proposed by the ICMC Problem Committee)

Let S = {S1, S2, . . . , Sn} be a set of n ≥ 2020 distinct points on the Euclidean plane, no three
of which are collinear. Andy the ant starts at some point Si1 in S and wishes to visit a series
of 2020 points {Si1 , Si2 , . . . , Si2020} ⊆ S in order, such that ij > ik whenever j > k. It is known
that ants can only travel between two points in S in straight lines, and that an ant’s path can
never self-intersect.

Find a positive integer n such that Andy can always fulfil his wish.

(Lower n will be awarded more marks. Bounds for this problem may be used as a tie-breaker,
should the need to do so arise.)

Solution. (solution by the ICMC Problem Committee)

We present the three methods known to the committee which yield a concrete bound. No
other methods were successfully used by any contestant to obtain a bound differing from these.
Note that perfect solutions achieving the bounds in (a), (b), and (c) score 3, 7, and 10 marks
respectively.

(a) We prove the result when n = 22018 + 1. Pick i1 = 1 and i2 = 2, and let S1 = S. The line
Si1Si2 divides the remaining points into two sets. Denote the set containing more points
by S2, and note that it contains at least 22017 points. Letting i3 be the smallest index of
the points in S2, note that Si2Si3 splits S2 into two sets, the larger of which will be denoted
S3 and contain at least 22016 points. Continuing in this way we note that when Si2019 is
picked, S2019 will contain 20 = 1 points, and hence we can pick that point to be Si2020 .
Note that we guarantee that the ant’s path does not self-intersect as all the points Si that
remain on the i-th step lie on the same side of each previously-travelled line segment as
the ant. Furthermore, the indices of the points visited increase by construction. Hence
the ant can visit 2020 points when n = 22018 + 1.

(b) We prove the result when n = 20192 + 1. We first introduce a system of Cartesian
coordinates such that no two points in S have the same x-coordinate. Then, as in the
statement of the lemma below, let f(Si) be the x-coordinate of Si, and let g(Si) = i. Hence
the lemma guarantees the existence of a sequence of 2019 + 1 = 2020 points in S such
that the x-coordinate and the index are both strictly monotonic. As the path joining the
sequence of points clearly cannot self-intersect, we are done if the index strictly increases.
If the index strictly decreases, we can invert the order in which we consider the sequence.
This does not change Andy’s path (except for the direction of traversal), and the index
now strictly increases, so we are done in this case also.

Lemma: Let A = {1, 2, . . . , a2 + 1}, and let f, g : A→ R be injective. Then there exists
a sequence B = b1, b2, . . . , ba+1 of distinct elements of A such that the sequences f(B) and
g(B) are both strictly monotonic. (This lemma is equivalent to Erdős–Szekeres Theorem.)

Proof: We may identify each integer i ∈ A with a point in R2 with coordinates (f(i), g(i)).
Then the problem is equivalent to proving that there always exists a subset of a+1 points
which are strictly monotonic in both their x and y-coordinates. Let C1, C2, . . . , Ca2+1 be
the sequence of points, ordered from smallest to largest x-coordinate. Iterating through
the sequence, we assign each point Ci a pair of positive integers: firstly, the length of the
longest decreasing subsequence† of points ending with Ci, and secondly, the length of the

†Decreasing with respect to the y-coordinate only.



longest increasing subsequence of points ending with Ci. We call this pair of numbers the
signature of the point. Now note that no two points can have the same signature, as the
point with greater x-coordinate must be either higher or lower than the point with lesser
x-coordinate. However, there are only a2 possible signatures if neither component in the
signature of any point exceeds a, a contradiction. Hence at least one point must have a
signature with one component greater than a, and the result follows.

(c) We prove the result when n = 20182 + 2.‡ Let Sk be a point lying on the convex hull
of S. Let S ′ = S\ {Sk}, and let X be the point adjacent to Sk on the convex hull of
S going anti-clockwise. Now introduce a system of polar coordinates with the origin at
Sk such that X lies on the ray θ = 0. Then, as in the statement of the lemma above,
let f(Si) equal the argument of Si and let g(Si) = i, for all Si ∈ S ′. Hence the lemma
guarantees the existence of a sequence of 2018 + 1 = 2019 points in S ′ such that the
argument and the index are both strictly monotonic. Note that the argument is a strictly
monotone function of distance travelled along the path, but as it is contained in [0, π),
the function must be injective, and hence the path cannot self-intersect. We now apply
the same sequence-inverting argument as in part (b) to correct the direction of traversal
if it is flipped. Denote the sequence of 2019 points in its current state Si1 , . . . , Si2019 .

Finally, note that due to the path strictly increasing argument, each of the triangles
SkSijSij+1 for j ∈ {1, . . . , 2018} contains no part of the path in its interior. Now fixing j
such that ij < k < ij+1, where we let i0 = 0 and i2019 = 20182 + 3, we may simply modify
the existing path by inserting Sk as a detour between Sij and Sij+1 to obtain the required
sequence of 2020 points.

‡This is the best bound known to the ICMC Problem Committee.


